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Preface

The international symposium Logica organized by the Institute of Philoso-
phy of the Academy of Sciences of the Czech Republic has a relatively long
history. It began in 1987 when the first conference of series was held in
Liblice Chateau. In the beginning the conferences were of mostly local im-
portance, but over the years they have acquired the status of a prestigious
international conference with a multidisciplinary flavour.
The annual symposia cover a broad field of logical topics and aim to

promote dialogue between various branches of logic. Logica hosted many
presentations by top specialists in mathematical and philosophical logic as
well as analytical philosophy and linguistics. The professional orientation
of the conference can be illustrated by mentioning several names of scholars
that the conference welcomed as the invited speakers: Nuel Belnap, Simon
Blackburn, Robert Brandom, Melvin Fitting, Yuri Gurevich, Petr Hájek,
Rom Harré, Jaakko Hintikka, Wilfrid Hodges, David Lewis, Per Martin-Löf,
Barbara Partee, Graham Priest, Greg Restall, Gabriel Sandu, and Stewart
Shapiro.
Among the central points of the ‘publication policy’ behind the proceed-

ings of the conference is the rule that the volume has to appear before
beginning of the next year’s conference. This ‘rush’, however, does not af-
fect, we believe, the quality of the preparation of the volumes. Until last
year they were published by the Institute’s publishing house Filosofia; the
present volume is the first prepared for College Publications. It contains a
majority of the papers presented at the symposium Logica 2008, which took
place from June 16 to 20 in the former Franciscan monastery of Hejnice, the
Czech Republic, where the participants spent five days not only in the lec-
turing hall but also in many informal discussions during the breaks, lunches
and social events. As you can see The Logica Yearbook 2008 brings together
various texts from mathematical and philosophical logic, history and phi-
losophy of logic, and natural language analysis. As has become usual for
the Yearbook series, the articles have not been sorted by subject — they
are ordered alphabetically by author and it is up to the reader to pick and
choose.
Editor’s acknowledgements

Both the Logica symposium and this book series are the result of a joint
effort of many people, who deserve my deep thanks. Among them are the
main organizers Vladimı́r Svoboda and Timothy Childers from the Depart-
ment of Logic of the Institute of Philosophy and Pavel Baran, the director
of the Institute of Philosophy. The conference was promoted also by the
Grant Agency of the Czech Republic, which provided significant support by
financing the grant project no. 401/07/0904. We are further indebted to
Marie Vučková, Head of the Foreign Relations Department of the Institute,
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for organizational support. The organization would be impossible without
the help of Petra Ivaničová during and before the conference. Our stay in
Hejnice Monastery was made pleasant through the efforts of Father Miloš
Raban and the staff of the monastery. Special thanks also go to the Bernard
Family Brewery of Humpolec, traditional sponsor of the social programme
of the symposium. I would also like to thank to Marie Benediktová for the
layout of this volume. Many thanks go to College Publications and its man-
aging director Jane Spurr. Last but not least we would like to thank all the
conference participants and to authors of the articles for their outstanding
cooperation during the editorial process.

Prague, May 2009 Michal Pelǐs



Fuzzy Logics Interpreted as Logics of Resources

Libor Běhounek∗

Girard’s linear logic (1987) is often interpreted as the logic of resources,
while formal fuzzy logics (see esp. Hájek, 1998) are usually understood as
logics of partial truth. I will argue that deductive fuzzy logics can be in-
terpreted in terms of resources as well, and that under most circumstances
they actually capture resource-aware reasoning more accurately than linear
logic. The resource-based interpretation then provides an alternative moti-
vation for formal fuzzy logics, and gives an explanation of the meaning of
their intermediary truth values that can be justified more easily than their
traditional motivation based on partial truth.

1 Linear and substructural logics

Recall that linear logic and its variants are representatives of basic substruc-
tural logics (see, e.g., Restall, 2000, Paoli, 2002, Ono, 2003), i.e., logics that
result from discarding some of the structural rules from the Gentzen-style
calculi LK and LJ for classical and intuitionistic logic. In particular, linear
logic LL discards the rules of contraction (C)

Γ, A,A,∆ =⇒ Σ

Γ, A,∆ =⇒ Σ

Γ =⇒ Σ, A,A,Π

Γ =⇒ Σ, A,Π

and weakening (W)
Γ =⇒ Σ
A,Γ =⇒ Σ

Γ =⇒ Σ
Γ =⇒ Σ, A

from the calculus LK for classical logic. Intuitionistic linear logic ILL dis-
cards the same rules (C,W) from the calculus LJ for intuitionistic logic.
Affine linear logic ALL and intuitionistic affine linear logic IALL discard
only the rule of contraction (C) from the calculi LK and LJ, respectively,
but retain the rule of weakening (W).

∗The work was supported by Grant No. IAA900090703 “Dynamic formal systems” of the
Grant Agency of the Academy of Sciences of the Czech Republic and by Institutional
Research Plan AV0Z10300504.
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Recall further that substructural logics work in general with two con-
junctions: the lattice conjunction ∧ (also called weak, additive, or exten-
sional conjunction) and fusion & (also called group, strong, multiplicative,
or intensional conjunction). Similarly there are in general two disjunctions
(lattice ∨ and strong) as well as two implications, two negations, etc., but
the latter split connectives will not play a significant role in our account,
as we shall mainly deal with intuitionistic substructural logics (which lack
strong disjunction) and commutative fusion (then both implications coin-
cide). Since in such substructural logics implication internalizes the sequent
sign =⇒ and & the comma on the left-hand side of sequents (cf. Ono, 2003),
the validity of the sequent A1, . . . , An =⇒ B is equivalent to the validity
of the formula A1 & . . . & An → B. Consequently, the rule of contraction
corresponds to the validity of A→ A&A and the rule of weakening to the
validity of A&B → A.
The algebraic semantics of substructural logics is that of residuated lat-

tices (see, e.g., Jipsen & Tsinakis, 2002; Ono, 2003; Galatos, Jipsen, Kowal-
ski, & Ono, 2007), i.e., lattices endowed with an additional monoidal oper-
ation ∗ (representing &) monotone w.r.t. the lattice order ≤, and its two
residuals /, \ (representing implications) that satisfy the residuation law

x ∗ y ≤ z iff y ≤ x\z iff x ≤ z/y.

If ∗ is commutative, the two residuals /, \ coincide and are usually denoted
by ⇒. The set of designated elements is {x | x ≥ 1}, where 1 is the neutral
element of the monoidal operation ∗. If convenient, residuated lattices may
be expanded (to Ono’s FL-algebras) by a constant 0 for falsity, which makes
it possible to define negation as x⇒ 0.
The term substructural logics will in this paper denote logics of classes

of residuated lattices, following the stipulative definition by Ono (2003).
In particular, (affine) intuitionistic linear logic is the logic of all (bounded
integral) commutative residuated lattices,1 and (affine) linear logic is the
logic of those that furthermore satisfy the law of double negation.

2 Linear logic as the logic of resources

The reason why linear logic has been regarded as the logic of resources is
illustrated by Girard’s (1995) well-known ‘Marlboro–Camels’ example:

1A residuated lattice is called commutative if its monoidal operation ∗ is commutative;
it is called bounded integral if 0 ≤ x ≤ 1 for all elements x. We shall usually work with
commutative residuated lattices only.
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Consider the propositions

D = “I pay $1.”,

M = “I get a pack of Marlboro.”,

C = “I get a pack of Camels.”

Then the sequent

D →M,D → C =⇒ D →M & C

expressing the inference

If I pay $1, I get a pack of Marlboro
If I pay $1, I get a pack of Camels
∴ If I pay $1, I get a pack of Marlboro and I get a pack of Camels

is derivable by the rules of classical as well as intuitionistic logic. The infer-
ence is, however, viewed as counter-intuitive, if the conclusion is straight-
forwardly understood as getting both packs. The disputable sequent is not
derivable in linear logic, though: linear logic only derives the sequent

D →M,D → C =⇒ D &D →M & C

which under a similar interpretation captures the fact that I need to pay
two dollars to get both packs of cigarettes.
In this sense, linear logic is said to regard formulae as ‘resources’, which

are ‘spent’ when used as premises of implications (in the Marlboro–Camels
example, the premise D is spent by being detached from D →M to obtain
M , and cannot be used again for D → C to obtain M &C). More formally,
since premises cannot in linear logic be contracted (due to the lack of the rule
(C)), they act as tokens for ‘resources’ needed to support the conclusion: a
sequent is valid in linear logic only if it has the needed amounts of premises
required for arriving at the conclusion.2 In other words, linear logic ‘counts’
premises of sequents as if they represented resources needed for ‘buying’ the
conclusion (where different propositional letters would represent different
types of resources, while their occurrences in the sequent would represent
tokens or units of that type).
Nevertheless, this feature of linear logic is due solely to the absence of

the rule (C) of contraction, and therefore is common to all contraction-
free substructural logics. It is not clear why exactly linear logic should

2Exactly the needed amounts in LL or ILL; at least the needed amounts in their affine
versions (it being an effect of weakening that we need not spend all premises). In logics
with both (C) and (W), e.g., classical or intuitionistic logic, each premise required for
arriving at the conclusion only needs to be present at least once.
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be more adequate as a logic of resources than any other contraction-free
logic. Rather, it is to be expected that different contraction-free logics
will correspond to different assumptions on the structure of resources. In
the following sections I will argue that linear logics are in fact adequate
only for very general structures of resources, while under most common
circumstances, stronger logics are appropriate.

3 The structure of resources

As a first task, we need to refine our conception of resources. Since we aim
at an informal semantic explanation of certain logics, instead of giving a
formal definition we shall just list a few examples indicating what kind of
resources we have in mind, and specify the mathematical properties they
are assumed to satisfy.
Our notion of a resource will be rather broad: it can include any kind

of things that can be counted or measured, that can be acquired and ex-
pended, or used for any purpose. Among the resources we consider are,
e.g.: money (costs, prices, debts, etc.); goods (packs of cigarettes, clothes,
cars, etc.); industrial materials (chemicals, natural raw materials, machine
components, etc.); cooking ingredients (flour, salt, potatoes, etc.); computer
resources (disk space, computation time, etc.); penalties (which can be re-
garded as a kind of costs incurred); sets, multisets, or sequences (tuples or
vectors) of the above; etc.
It can be observed that all of these (as well as many other) kinds of

resources exhibit the structure of a residuated lattice. In particular, there
is:

• A partial order � comparing the amounts of the resources. For in-
stance, 300 g of flour is more than 200 g of flour; two pens and three
pencils are more than one pen and three pencils; etc. For the sake of
compatibility with further definitions, we shall understand x � y as
“the resource x is larger than or equal to y.” The order need not be
linear, as for instance two pens are not comparable with three pencils
(if different items are counted separately). However, it can be assumed
that � is a lattice order, as this is true for all prototypical cases: by
definition, it amounts to supposing that for any two resources x, y (for
instance: x = 2 pens and 3 pencils; y = 1 pen and 4 pencils), there
is the least resource that is at least as large as both (in this case,
2 pens and 4 pencils) and the largest resource that is at most as large
as both (here, 1 pen and 3 pencils). Even though there may exist
resources that do not satisfy this assumption, we leave them aside in
our considerations.
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• A monoidal operation ∗ of composition (or fusion) of resources. For
example, 300 g of flour and 200 g of flour is 500 g of flour; 2 pens and
3 pencils plus 1 pen and 3 pencils are 3 pens and 6 pencils; etc. Putting
the resources together can be assumed to be associative (i.e., we pre-
sume that the total sum does not depend on the order of summation).
The kinds of resources we consider always have a neutral element e,
the empty resource, which does not change the amount when added
to another resource: e.g., 0 g of flour; 0 pens and 0 pencils; etc. Even
though composition of resources need not be commutative (consider,
e.g., the order of adding ingredients when cooking), for the sake of
simplicity of exposition we shall only consider commutative ∗ here
(generalization to non-commutative ∗ is always straightforward).

• Finally, resources of all typical kinds can be ‘subtracted’ or ‘evened
up’, i.e., their composition has the residual operation⇒ expressing the
remainder, or the difference of amounts: x ⇒ y is the least resource
to be added to x in order to get a resource at least as large as y.3 For
example, if x = 200 g of flour and y = 300 g of flour, then x ⇒ y is
100 g of flour, as one needs to add 100 g of flour to 200 g of flour to
get at least 300 g; while if x = 2 pens and 3 pencils, and y = 1 pen
and 3 pencils, then x ⇒ y is 0 pens and 0 pencils (i.e. the empty
resource e), as we need not add anything to x to get at least y.

All kinds of resources we consider thus have the structure of a (commuta-
tive) residuated lattice L = (L,∧,∨, ∗,⇒, e). Particular kinds of resources
can have additional properties: for example, most usual kinds of resources
satisfy the so-called divisibility condition x ∗ (x⇒ y) = x ∧ y.
Since we aim at a simple resource-based interpretation of existing logical

calculi rather than development of an expressively rich logic of resources
for computer science, we do not consider such phenomena as, e.g., resource
dynamics or possible non-totality of ∗ (which are modeled by such systems as
the logic of bunched implications, computation logics, or synchronous and
asynchronous calculi — see, e.g., Pym & Tofts, 2006 for references), but
only reconstruct and refine the assumptions on resources that are adopted
by linear logic.

4 Formulae as resources

There are at least two possible representations of resource-based semantics
of substructural logics. One of them takes resources (i.e. elements of the

3 I.e. x ⇒ y = sup{z | z ∗ x � y}, which is an equivalent formulation of the residuation
law in complete lattices. For incomplete lattices, a more cautious formulation based on
Dedekind–MacNeille cuts is due, namely {z | z ∗ x � y} = {z | z � x ⇒ y}, which is a
general equivalent of the residuation law.
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residuated lattice L described in Section 3) directly as semantic values as-
signed to propositional formulae. Recall that a logical calculus can have
interpretations other than propositional: cf., e.g., the interpretation of the
Lambek calculus as the categorial grammar (where the semantic values of
formulae are grammatical categories), or the Curry–Howard combinatorial
interpretation of the implicational fragment of intuitionistic logic (where
formulae are interpreted as types and proofs as programs). In a similar
vein, we can interpret the algebraic semantics of substructural logics under
the “formulae-as-resources” paradigm as follows:

• The semantic value of a formula ϕ is a resource ‖ϕ‖ ∈ L.

• The Tarski condition ‖1‖ = e of the algebraic semantics interprets the
formula 1 as the empty resource (or ‘being for free’).

• Similarly, the clause ‖ϕ& ψ‖ = ‖ϕ‖ ∗ ‖ψ‖ says that conjunction rep-
resents the fusion of resources.

• The value of implication, ‖ϕ→ ψ‖ = ‖ϕ‖ ⇒ ‖ψ‖, is the resource
needed to get at least ‖ψ‖, given the resource ‖ϕ‖.

• Finally, the lattice connectives ∧,∨ represent the meet and join of
resources (with respect to the size order � of resources).

The formula ϕ is regarded as valid under a given evaluation iff e � ‖ϕ‖, i.e.,
iff it represents a resource that is for free or even cheaper.

5 Resources as possible worlds

Another way how to interpret substructural logics in terms of resources
(cf. Pym & Tofts, 2006) is to regard the structure L of resources as a
Kripke frame (L,�) endowed with a monoidal structure (∗, e). Unlike in the
“formulae-as-resources” paradigm, formulae are here interpreted as propo-
sitions, and resources only serve as indices that may (or may not) validate
them. The forcing relation r  ϕ, “the resource r ∈ L supports the for-
mula ϕ,” is required to satisfy the following conditions:

• e  1,

• r  ϕ& ψ iff ∃s, t ∈ L: r � s ∗ t and s  ϕ and t  ψ,

• r  ϕ→ ψ iff ∀s ∈ L: if s  ϕ, then r ∗ s  ψ,

• r  ϕ ∧ ψ iff r  ϕ and r  ψ (“shared resources” — contrast the
clause for &),
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• r  ϕ ∨ ψ iff ∃s, t ∈ L: r � s ∨ t and (s  ϕ or s  ψ) and (t 

ϕ or t  ψ),

and the condition of persistence (if r � s and s  ϕ, then r  ϕ), expressing
that “larger resources suffice as well.” The formula ϕ is defined to be valid
under  iff e  ϕ, i.e., iff supported even by the empty resource.4

6 The role of tautologies

In the above semantics, tautologies w.r.t. a class K of (commutative) resid-
uated lattices are defined as the formulae ϕ that get a value ‖ϕ‖ � e under
all evaluations of propositional letters in any residuated lattice L ∈ K (resp.
are supported by e under all  in every Kripke frame L ∈ K). The tautolo-
gies of substructural logics thus represent combinations of resources that
are always “for free or cheaper”.
More importantly, since all residuated lattices validate

e � r ⇒ s iff r � s,

tautologies of the form ϕ → ψ internalize sound rules of resource transfor-
mations that “preserve expenses” (in the sense of �). Inference in substruc-
tural logics can thus be understood as inference salvis expensis, in a similar
manner as inference salva veritate in classical logic.5

Classes of residuated lattices admitted as possible structures of resources
then determine particular logics of resources in the above sense. In particu-
lar, by the known completeness theorem, ILL is the logic of all commutative
residuated lattices, and so it is an adequate logic if just the general structure
of a commutative residuated lattice is assumed for admissible kinds of re-
sources. Its variants IALL, ALL, and LL restrict the structure of resources
to narrower classes of commutative residuated lattices, and other substruc-
tural logics correspond to further specific classes of residuated lattices of
resources.6

In the following sections I will argue that most typical kinds of resources
satisfy the so-called prelinearity condition, and so are in fact governed by
deductive fuzzy logics rather than linear logics.

4As this is not the aim of this paper, we omit the details on the correspondence between
the Kripke-style and algebraic semantics of substructural logics. For more information
see (Ono & Komori, 1985).
5Note that the general validity of ‖ϕ‖ � ‖ψ‖ defines the local consequence relation
(expressed, i.a., by sequents in Section 1), while Hilbert-style calculi for substructural
logics usually capture the global consequence relation “e � ‖ψ‖ whenever e � ‖ϕ‖”.
6For example, classical logic can be interpreted as the logic distinguishing just two sizes
of resources: empty e = ‖1‖ and non-empty f = ‖0‖ ≺ e.
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7 Deductive fuzzy logics

Deductive fuzzy logics can be delimited as logics of (classes of) linearly
ordered residuated lattices (Běhounek & Cintula, 2006; Běhounek, 2008).
Among the extensions of ILL they can be characterized as those that satisfy
the axiom of prelinearity (Pre): ((A → B) ∧ 1) ∨ ((B → A) ∧ 1), or in the
presence of weakening, equivalently (A→ B) ∨ (B → A).
Let us call residuated lattices for which a substructural logic L is sound,

L-algebras. The prelinearity axiom ensures that a deductive fuzzy logic L

is sound and complete, not only w.r.t. the class of all L-algebras (the gen-
eral completeness theorem), but also w.r.t. the class of all linear L-algebras
(the linear completeness theorem). The linear completeness theorem char-
acterizes deductive fuzzy logics among substructural logics; the finitary ones
are moreover characterized by the linear subdirect decomposition property,
which says that each L-algebra is a subdirect product7 of linear L-algebras.
(See Cintula, 2006 for details.)
Besides the general and linear completeness theorems, most important

deductive fuzzy logics furthermore enjoy the standard completeness theorem,
i.e. the completeness w.r.t. a set of (selected) L-algebras on the unit interval
[0, 1] of reals (with the usual ordering ≤), called the standard L-algebras.
Since L-algebras on [0, 1] are fully determined by the monoidal operation
∗, standard-complete deductive fuzzy logics can be defined as logics of (sets
of) such monoidal operations ∗ on [0, 1]. For example,

• Łukasiewicz logic Ł is the logic of the Łukasiewicz t-norm x ∗ y =
(x+ y − 1) ∨ 0,

• Gödel–Dummett logic G is the logic of the minimum, i.e. of x∗y = x∧y,

• Product fuzzy logic Π is the logic of the ordinary product of reals,
x ∗ y = x · y,

• Hájek’s basic fuzzy logic BL is the logic of all continuous t-norms,8

• Monoidal t-norm logicMTL is the logic of all left-continuous t-norms,

• Uninorm logic UL is the logic of all left-continuous uninorms, etc.

For more information on these logics see (Hájek, 1998; Esteva & Godo, 2001;
Metcalfe & Montagna, 2007).

7 I.e. a subalgebra of the direct product with all projections total.
8A commutative associative monotone binary operation on [0, 1] with a neutral ele-
ment e ∈ [0, 1] is called a uninorm. A t-norm is a uninorm with e = 1.
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The weakest deductive fuzzy logic extending a substructural logic L is
often9 obtained by adding the prelinearity axiom (Pre) to L: for instance,

ILL + (Pre) = UL

IALL + (Pre) = MTL

are the weakest deductive fuzzy logics extending intuitionistic linear logics,
or the logics of linear commutative (bounded integral) residuated lattices.
(For LL and ILL, the double negation law is to be added to UL resp.
MTL.)

8 Fuzzy logics as logics of costs

Since deductive fuzzy logics are logics of (special classes of) residuated lat-
tices, they can be interpreted as logics of resources in the same way as other
substructural logics. Specifically, by the linear completeness theorem (see
Section 7), deductive fuzzy logics are sound and complete w.r.t. particular
classes of linear residuated lattices, and so they are adequate for resources
that are linearly ordered by �. In other words, deductive fuzzy logics are
those logics of resources in which we can assume that all resources are com-
parable.
Prototypical linearly ordered resources are costs, that is, resources con-

verted to money. Even though resources in general need not be comparable
(cf. the examples in Section 3), their costs (if specified) can always be com-
pared, as money (of a single currency) forms a linear scale.10 Besides money,
there are many other kinds of resources that are linearly ordered, e.g., gal-
lons of fuel, computation time, operational memory, etc. Irrespective of
their nature, we shall call all linearly ordered resources costs, to distin-
guish them from resources that are not linearly ordered. For convenience,
costs with values in the interval [0,+∞], e.g., monetary prices (where 0 is
“gratis” and +∞ may represent the price of unattainable goods), will be
called prices.
Deductive fuzzy logics can thus be regarded as logics of costs, in the same

sense as linear logics are regarded as logics of resources. Different ways of
adding up costs — given by the fusion operation — yield different deductive
fuzzy logics. The most typical examples are given below:

• If prices are summed by ordinary addition, we obtain the product
logic Π, since the residuated lattice [0,+∞] with the fusion + and the
lattice order ≥ is isomorphic (via the function p 7→ 2−p) to the stan-
dard product algebra [0, 1] with the fusion · and the lattice order ≤.

9 Always if modus ponens is the only derivation rule of L (Cintula, 2006).
10This idea is due to Petr Cintula (pers. comm.).
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Note that in the standard product algebra, 0 represents the infinite
cost and 1 the null cost. If the infinite cost is not considered, the
standard product algebra without 0 (called the standard cancellative
hoop) and its logic CHL (cancellative hoop logic, see Esteva, Godo,
Hájek, & Montagna, 2003) are obtained.11

• If prices are bounded by a value a ∈ (0,+∞) and summed by bounded
addition truncated at a, we obtain the Łukasiewicz logic Ł, since the
residuated lattice [0, a] with bounded addition and ≥ is isomorphic
via p 7→ (a− p)/a to the standard [0,1] algebra for Łukasiewicz logic.
The bound a (corresponding to 0 in the standard algebra) appears
naturally if, e.g., a fixed maximum price is set, if there is a maximal
possible cost in the given setting, or if the price a is in the given
context unaffordable.

• If prices are combined by the maximum, Gödel logic G (or its hoop
variant) is obtained (by the same isomorphism p 7→ 2−p as in the case
of addition). The maximum may seem a strange operation for summa-
tion of prices, but it occurs naturally whenever the costs can be shared
by the summands. For example, if temporary results can be erased
before the computation proceeds, the memory needed for temporary
results is only the maximum (rather than sum) of their sizes.

Logics of other particular t-norms are obtained by using variously dis-
torted ‘addition’ of prices. For instance, the logic of an ordinal sum of the
three basic t-norms corresponds to using different summation rules (of the
three described above) in different intervals of prices. The logic MTL is
obtained if all monotone commutative associative left-continuous operations
with the zero price acting as the neutral element are admitted as ‘addition’
of prices; similarly for BL and continuous such operations, etc. The logic
UL and other uninorm logics only differ by permitting also negative prices,
which express gains rather than costs.

9 Fuzzy logics as logics of resources

In spite of the linear completeness theorem, which makes it possible to
regard deductive fuzzy logics as logics of linearly ordered costs, algebras
for deductive fuzzy logics need not be linear (consider, e.g., their direct

11 If the costs come in packages (e.g., if one has to buy a whole pack of cigarettes even if
one needs only a few), the algebra is in general just a ΠMTL-chain instead of a product
algebra, and the resulting logic in general only extends the logic ΠMTL (Esteva & Godo,
2001) or its hoop variant. A similar effect of packaging, which destroys the divisibility
of the algebra (see Section 3), can be observed in other algebras of costs as well. (This
observation is based on remarks by Rostislav Horč́ık and Petr Cintula.)
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products). By the general completeness theorem (see Section 7), a deductive
fuzzy logic L is also sound and complete w.r.t. the class of all L-algebras:
thus L can also be interpreted as the the logic of all kinds of resources that
form the structure of a (possibly non-linear) L-algebra.
Let us restrict our attention to finitary deductive fuzzy logics only, as

they include all prototypical cases; for the sake of brevity, let us call them
just fuzzy logics further on. By the linear subdirect decomposition theorem
(see Section 7), any L-algebra for a fuzzy logic L can be decomposed into
a subdirect product of linear L-algebras. Fuzzy logics can thus be charac-
terized as logics of such resources that either are linearly ordered, or can
at least be decomposed into linearly ordered components. In other words,
a sound and complete resource-based semantics of fuzzy logics need not be
just that of costs, but also that of resources representable as tuples (possibly
infinitary) of costs.
It can be observed that many kinds of non-linear resources can actually

be represented as tuples of linearly ordered values. For example, ingredients
for making pizza and those for making spaghetti are not subsets of each
other, thus cooking ingredients do not form a linearly ordered residuated
lattice.12 Nevertheless, they can be decomposed into (potentially infinitely
many) linearly ordered components, as the amounts of each individual item
on an ingredient list are always comparable; and indeed it can be checked
that the prelinearity axiom is valid in this residuated lattice.13

In fact, most typical resources (including those mentioned in Section 3)
are indeed decomposable in this way into linear components. Even many
resources for which such a decomposition is not known (e.g., human intel-
ligence) can at least be believed to be linearly decomposable (into some
unknown and very fine linear components). It is actually rather hard to
find a kind of resources that demonstrably cannot be so decomposed.
Thus we can conclude that all typical kinds of resources are linearly de-

composable, and therefore they satisfy the axiom of prelinearity, which is
not valid in linear logic nor in its affine or intuitionistic variants; conse-
quently, they are actually governed by deductive fuzzy logics rather than
linear logics. Linear logics are thus only adequate for a very general struc-
ture of resources, which admits even the rare kinds of resources that are not
decomposable into linearly ordered components. As regards most usual kind

12The elements of the residuated lattice of all possible ingredient lists (such as can be
found in recipe books) are tuples of quantities of particular ingredient types (e.g., [300 g
of flour, 2 tomatoes, 2 lt of oil], zero amounts omitted). The tuples are naturally ordered
by inclusion (i.e. pointwise by component sizes), and fusion represents adding up amounts
of each ingredient.
13 Since the fusion of amounts is (unbounded) addition in each component and infinite
amounts do not occur, by extending the considerations of Section 8 the residuated lattice
can actually be identified as a cancellative hoop, and the logic of cooking ingredients as
the cancellative hoop logic CHL.
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of resources, linear logic is too weak for them, as it does not validate the law
of prelinearity they obey. Assuming commutativity of fusion, the weakest
logic adequate for typical resources is the uninorm logic UL (or MTL if
weakening is assumed, i.e., if the empty resource is the smallest). Specific
structures of typical resources are governed by even stronger fuzzy logics
— in particular, product logic Π if resources are combined by addition in
each linear component, Łukasiewicz logic Ł if the addition is bounded, and
Gödel logic G in the case of shared resources (i.e., if they componentwise
combine by the maximum).
Thus it turns out that despite the common opinion, it is actually fuzzy

logics, rather than linear logics, that could be categorized as typical logics
of resources.14 The interpretation in terms of resources and costs moreover
provides an alternative motivation for deductive fuzzy logics and an expla-
nation of the meaning of their intermediary truth-values that can in some
respects be more easily justified than the standard account based on degrees
of partial truth.
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Strong Paraconsistency and Exclusion Negation

Francesco Berto∗

1 True or not?

Strong paraconsistency, also called dialetheism, is the view according to
which there are dialetheias, that is, sentences A such that both A and ¬A
are true,1 and it is rational to accept and assert them (an eminent case being
allegedly provided by the various versions of the Liar paradox). One could
therefore picture dialetheism as disputing the Law of Non-Contradiction
(LNC). As a matter of fact, though, all the main formulations of the LNC
are not disputed by a typical dialetheist, in the sense that she is committed
to accept them. The dialetheic attitude of the dialetheist is expressed by
typically accepting, and asserting, both the usual versions of the LNC and
sentences inconsistent with them.
Of course, this calls for a drastic revision of our standard notions of truth

and negation. Philosophers often disagree on the content of basic logical and
metaphysical concepts (such as identity, existence, necessity, etc.), or on the
validity of some very basic principles of inference (such as Contraposition
or the Disjunctive Syllogism). It is well known that this kind of discussion
often faces impasses, or turns into a hard conflict of intuitions. It is very
difficult to establish when some party or other begins to beg the question.
One wonders whether a non-standard explanation of a basic logical notion
involves a real disagreement with a classical account of that notion, or its
principles simply describe a different thing using the same name or symbol
(the famous “change of subject” Quinean motto).

∗The ideas on the NOT-operator developed in this paper have been hinted at in (Berto
2007, Ch. 14), and exposed extensively in (Berto 2008) — I am grateful to the Editors of
the Australasian Journal of Philosophy for the permission to reuse some of that material.
Thanks to Graham Priest, Francesco Paoli, Ross Brady, Max Carrara, Vero Tarca, Luca
Illetterati, and Diego Marconi, for helpful comments, and to the participants to Logica
2008 for the lively discussion of the talk given there.
1 See (Berto & Priest, 2008).
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This seems to be decidedly the case with strong paraconsistency. When
someone claims that both A and not-A are true, one wonders what is meant
by “true”; and, of course, by “not”:

The fact that a logical system tolerates A and ∼A is only significant
if there is reason to think that the tilde means ‘not’. Don’t we say
‘In Australia, the winter is in the summer’, ‘In Australia, people who
stand upright have their heads pointing downwards’, ‘In Australia,
mammals lay eggs’, ‘In Australia, swans are black’? If ‘In Australia’
can thus behave like ‘not’ (. . . ), perhaps the tilde means ‘In Aus-
tralia’?2

Is paraconsistent negation just an In-Australia operator? In a thoroughly
argued essay, Catarina Dutilh Novaes has recently suggested that, critics
notwithstanding, the real philosophical challenge for paraconsistent logics
does not consist in providing a plausible account for negation, but for the
notion of contradiction.3 Attacks to paraconsistency delivered by claiming
that paraconsistent negation is not negation, according to Dutilh Novaes,
“can be neutralized if it is shown that the conflation between contradiction
and negation is not legitimate,” and that “paraconsistent negation is in
principle as real a negation as any other;”4 for, as the nice survey of the
history of logical negation provided in her paper shows, there is no unique
real negation around.5

On the contrary, it is the notion of contradiction which spells trouble for
(strong) paraconsistentists. The concept of contradiction “can be [defined]
without using the negation: A and B are contradictory propositions iff
A ∨B holds and A ∧B does not hold, regardless of the form of A and B.”
Therefore “contradiction is the property of a pair of propositions which
cannot both be true and cannot both be false at the same time;” since two
propositions that are contradictories according to classical logic can both
be true according to the (strong) paraconsistentist, one concludes that the
latter simply rejects the classical notion of contradiction. So “paraconsistent
logicians must give an account of what contradiction amounts to within a
paraconsistent system.”6

A strong paraconsistentist may object to the characterization of the no-
tion of contradiction just given, for the definition uses a negation in the
definiens: contradictories “cannot both be true and cannot both be false.”
Now is that “not” a classical or a paraconsistent negation? (Strong) para-
consistent logicians such as Graham Priest prefer to assert that negation

2 (Smiley, 1993, p. 17).
3 See (Dutilh Novaes, 2007).
4 (Dutilh Novaes, 2007, pp. 479 and 482).
5On this, see also (Wansing, 2001).
6 (Dutilh Novaes, 2007, pp. 479 and 483).
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is a contradictory-forming operator, but define contradictoriness without
adopting a negation in the definiens: A and B are contradictories iff, if A
is true then B is false; and if A is false then B is true. Many paraconsistent
negations, then, turn out to be contradictory-forming operators; for in such
logics as LP (Priest’s Logic of Paradox)7 and FDE (Belnap and Dunn’s First
Degree Entailment), negation actually is an operator that truth-functionally
switches truth and falsity: if A is true, then ¬A is false; if A is false, then
¬A is true; if A is both true and false, then ¬A is, too (and if the seman-
tics admits truth-value gaps, we may also have that A is neither true nor
false; then, ¬A is neither true nor false, too). Now the debate has been
moved back to the notions of truth and falsity: do they overlap? Can some
truth-bearer bear both?
If we want to have a non-question-begging debate on dialetheias and

the LNC, instead of concentrating on truth and falsity we may go back to
negation. Or, at least, this is the way pursued in this paper. Must there be
a unique good account of negation? Perhaps, as Dutilh Novaes forcefully
argues, not. We may have distinct intuitions on different sentential and
predicate negations, which may be characterized by different theories. This
does not entail, though, that no non-question-begging debate is feasible. On
the contrary, I think it is possible to characterize a negation (I shall label it
“NOT”) with the following pleasant features:

1. its definition does not refer to the contentious concept truth;

2. it has a strong pre-theoretical motivation, because of its indispensable
expressive function in language and communication; and

3. it is fully accepted also by dialetheists, because it is based on a deep
metaphysical intuition they show to fully share: the intuition of ex-
clusion.

If the characterization of NOT proposed in the following is sufficient to
confer a determinate meaning to the negation in question, we can conve-
niently phrase a formulation of the LNC via such a negation. This LNC
might be indisputable also from the dialetheist’s point of view. “Indis-
putable” should be understood in the following sense: the dialetheist is
forced to accept it, without also accepting something inconsistent with it.
It might be a version of the LNC on which both the orthodox friend and
the dialetheic foe of consistency can agree in this sense.

7 See (Priest, 1979), (Priest, 1987).
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2 The Exclusion Problem and Priest’s Pragmatic Way Out

I will start with a problem facing strong paraconsistency, which has been
variously recognised in the literature. I believe it to be the main theoret-
ical trouble for dialetheism, and I have elsewhere proposed to call it the
Exclusion Problem.8 It goes as follows.
When you say: “A”, and a dialetheist replies: “¬A”, she might not have

managed to rule out what you have said, precisely because of the features
of her paraconsistent negation. In the dialetheic framework, ¬A does not
rule out A on logical grounds: it may be the case both that A and that
¬A, so the dialetheist may accept them both. Also saying “A is false,” and
even “A is not true,” need not rule out A on the dialetheist’s side. In many
paraconsistent logics, beginning with LP, given any set of sentences S, it
is logically possible that every sentence of S is true. This happens in the
so-called trivial model of LP: if all atomic sentences are both true and false,
then all sentences (truth-functionally) are. In a nutshell: nothing is ruled
out on logical grounds only in the dialetheic framework. Many authors have
inferred that dialetheism faces the risk of ending up inexpressible.9

According to Priest, though, these troubles with ruling out things can
be solved by turning into the realm of pragmatics. In order to help the
dialetheist rule out something, he has provided an interesting treatment of
the notion of rejection. Let us call acceptance and rejection two mental
states a subject x has towards (the proposition expressed by) a sentence.
Acceptance and rejection are polar opposites: to reject something is to pos-
itively refuse to believe it. Assertion and denial, on the other hand, are
(typically) linguistic acts or, equivalently, illocutionary forces attached to
utterances. Roughly, assertion and denial are the linguistic counterparts of
acceptance and rejection. Acceptance and assertion, and, respectively, rejec-
tion and denial, are often conflated by philosophers, and anyway for most
of our purposes we can run linguistic acts and the corresponding mental
states together. Let’s have two sentential operators, “⊢x” and “⊣x”, whose
reading is, respectively, “rational agent x accepts/asserts (that)” and “ra-
tional agent x rejects/denies (that).” The standard treatment has it that
rejection/denial is equivalent to the acceptance/assertion of negation:

⊣x A↔⊢x ¬A. (1)

If we understand it in terms of linguistic acts, (1) is the claim, famously
held by Frege and Peter Geach, according to which to deny something just
is to assert its negation. But Priest says that accepting ¬A is different
from rejecting A: a dialetheist can do the former and not the latter —

8 See (Berto, 2006), (Berto, 2007, Ch. 14).
9 See, e.g., (Parsons, 1990), (Batens, 1990), (Shapiro, 2004).
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exactly when she thinks that A is paradoxical. When A is a dialetheia, the
natural assumption (1) breaks down, and negation and denial come apart.
A denial/rejection of A becomes a non-derivative mental or linguistic act, in
that it is directly aimed at A (or at the content of A, or at the proposition
expressed by A, etc).10

Given that (1) can fail, the dialetheist can accept both A and ¬A, but she
does not need to accept and reject A. Actually, according to Priest she can-
not even do that: Priest considers acceptance and rejection as reciprocally
incompatible, even though A and ¬A are not:

Someone who rejects A cannot simultaneously accept it any more
than a person can simultaneously catch a bus and miss it, or win a
game of chess and lose it. If a person is asked whether or not A, he
can of course say ‘Yes and no’. However this does not show that he
both accepts and rejects A. It means that he accepts both A and
its negation. Moreover a person can alternate between accepting and
rejecting a claim. He can also be undecided as to which to do. But
do both he can not.11

And this is how the dialetheist can manage to rule out something, and
to express this. Although the she cannot rule out A by simply saying “¬A”,
she can reject A. So the pragmatic incompatibility of acceptance/assertion
and rejection/denial plays a pivotal role in Priest’s reply to the Exclusion
Problem.

3 NOT

This shows that even dialetheists have an intuition of exclusion, or incom-
patibility between something and something else. So I propose to search for
an operator (arguably, a negation) that allows us to capture and express the
intuition. We need to start from this very notion precisely because we want
to avoid explicitly employing the concepts of truth and falsity to character-
ize such an operator. The dialetheist casts doubts on their being exclusive,
by pointing out that some truth-bearers, notably, the Liars, fall under both
concepts simultaneously. Truth tables or truth conditions for negation can
give us no sense of the connection between negation and exclusion unless
we already share the intuition that truth and falsity rule out each other.
This brings us back to the issue of the notion of contradiction, raised by

Dutilh Novaes. Specifically, we should refrain from expressing exclusion via
the traditional concept of contrariness: defining A and B as contraries iff
“A∧B” is logically false won’t help when discussing with the dialetheist. But
10 See (Priest, 2006, p. 104).
11 (Priest, 1989, p. 618).
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one may try with the intuitive notion of exclusion itself, taken as primitive.
Animals and infants perceive incompatibilities in the world long before they
have developed or mastered an articulated language to express them. One
of the uses of a linguistic item that counts as a negation can therefore
be explained, as Huw Price has claimed, as “initially a means of registering
(publicly or privately) a perceived incompatibility.” And if “incompatibility
[is] a very basic feature of a speaker’s (or proto-speaker’s) experience of the
world,”12 then one can explain the negation we are looking for in terms
of incompatibility. We only need to assume that ordinary speakers and
rational agents have some acquaintance with exclusions — things of the
world ruling out each other: they can recognize them in the world, and in
their commerce with the world.
I shall talk of material exclusion or, equivalently, of material incompat-

ibility. One may characterize it in terms of concepts, properties, states
of affairs, propositions, or worlds, depending on one’s metaphysical prefer-
ences.13 Material exclusion bears this name to stress the fact that it is not
a merely logical, in the sense of formal, notion: it is based on the mate-
rial content of the involved concepts, or properties, etc. Some examples:
phenomenological colour incompatibilities, such as being (solidly) Red and
being (solidly) Green; concepts that express our categorization of physical
objects in space and time, such as x being here right now and x being way
over there right now, for a suitably small x.14 Or x being less than two
inches long and x being more than three feet long.15 But also Priest’s above
x’s catching the bus and x’s missing the bus will do.
Ok, this was the intuition. How do we formalize it? A feasible formal

account may adapt the idea developed by Michael Dunn that “one can
define negation in terms of one primitive relation of incompatibility (. . . ) in
a metaphysical framework.”16 So let us talk in terms of propositions (that
which is expressed by a sentence) and build a small algebra. Think of a
structure 〈U,⊂, V, •〉 where U is a set of propositions; ⊂ and • are binary
relations defined on U ; and V is a unary operation on subsets of U . ⊂ is to
be thought of as a pre-order, and “p ⊂ q” can be read as “The proposition
p entails the proposition q”. Given a set of propositions P ⊆ U , VP is the

12 (Price, 1990, pp. 226–228).
13For instance, we may view it as the relation that holds between a couple of properties P1

and P2 iff, by having P1, an object has dismissed any chance of simultaneously having P2.
Or we may also claim that material incompatibility holds between two concepts C1 and
C2 iff the very instantiating C1 by a puts a bar on the possibility that a also instantiates
C2. Or we may say that it holds between two states of affairs S1 and S2 iff the holding
of S1 precludes the possibility that S2 also holds (in world w, at time t, etc.).
14 See (Tennant, 2004, p. 362).
15 See (Grim, 2004, p. 63).
16 (Dunn, 1996, p. 9).
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(possibly infinitary: more on this soon) disjunction of all the propositions
in P . And • is precisely our primitive relation of material exclusion.
A proposition may have one or more incompatible peers: it may rule

out a whole assortment of alternatives. Patrick Grim, for instance, talks
about the exclusionary class of a given property. The exclusionary class of
a proposition p, then, is the set

E = {x;x • p}.

Then NOT- p is nothing but VE. If E has finite cardinality, then NOT- p
is just an ordinary disjunction: q1 ∨ · · · ∨ qn where q1, . . . , qn are all the
members of E.
Suppose there are infinitely many propositions incompatible with p. This

is a heavy metaphysical assumption, but let us grant it. Then, NOT- p turns
out to be an infinitary disjunction. If one has (understandable) problems
with infinitary disjunctions, we cannot avoid quantifying on propositions:

NOT- p =df ∃x(x ∧ x • p). (2)

Both in the finitary and infinitary case, it is clear in which sense NOT- p
is the logically weakest among the n incompatibles: it is entailed by any qi,
1 ≤ i ≤ n, such that qi • p. One may express the point via the following
equivalence:

x ⊂ NOT- p iff x • p. (3)

Putting NOT- p for x, and by detachment, we get:

NOT p • p, (4)

NOT- p is incompatible with p. The right-to-left direction of (3), then,
tells us that NOT- p is the weakest incompatible, i.e., it is entailed by any
incompatible proposition.17

Which logic should be read off the algebra depends on which algebraic
postulates we want to add. Depending on the choices we make, NOT will be-
come palatable for some logicians, even though others will be disappointed.
One may assume, reasonably enough, that • is symmetric. But if in the
algebraic framework NOT is stipulated as an operation of period two, i.e.

NOT-NOT- p = p, (5)

this is likely to be rejected by an intuitionist, though not by many paracon-
sistent logicians. The intuitionist may also object to the fact that NOT has

17Variations on the theme of the characterization of negation via incompatibility, and
on negation as the minimal incompatible, can be found in (Brandom, 1994, pp. 381ff.);
(Harman, 1986, pp. 118-20); (Peacocke, 1987).
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been defined using other operators, which goes against the independence of
logical constants in a constructivist framework (a remark I owe to Francesco
Paoli). Or, if we make the prima facie natural assumption that:

If p ⊂ q and x • q, then x • p, (6)

we can easily get contraposition. But such a result would be rejected by
those who want to dismiss contraposition on the basis of considerations on
the conditional, and also by some paraconsistentists. Different philosophi-
cal parties (classicists, intuitionists, paraconsistentists, etc.) have opposed
views on what negation is, whereas the aim here is to provide an intuitive
depiction on which all parties can agree; this is why I find formalization
useful only to a certain extent.

4 Minimal LNC

Independently of the possible additional characterization, NOT has some
nice features. First, is not explicitly defined via the concept truth. As Gra-
ham Priest has pointed out to me (in communication), this may not prevent
truth from jumping in again. I have been forced to admit that, given some
(albeit debatable) metaphysical assumptions, we may need propositional
quantification to spell out the details of NOT. And such quantification is
inter-definable with truth. But what NOT is explicitly referred to is the
concept exclusion, whose primitiveness has been argued for above.
Secondly, NOT has a strong pre-theoretical appeal as an exclusion-ex-

pressing tool: it allows us to rule out things by claiming that something
incompatible with them is going on. This is what at least some of the items
we qualify as negation should help us to do.
Finally, dialetheists grasp the notion of exclusion. They ask us to stop

using “not” or “true” as exclusion-expressing devices, because “not-A” is
insufficient by itself to rule out A, and “A is true” is insufficient by itself to
rule out that A is also false. But Priest’s account of acceptance and rejection
shows that the dialetheist believes in the impossibility of some couples of
facts’, or states of affairs’, simultaneously obtaining; or, equivalently, that
she assumes that some things materially exclude some others: x’s simul-
taneously catching and missing the bus, for instance; and, of course, x’s
simultaneously accepting and rejecting the same A, this being, as we have
seen, a basic step in Priest’s answer to the Exclusion Problem. NOT is
supposed to work even in a framework in which nothing is ruled out on
logical grounds alone, because it is not merely logically, i.e. formally, but
metaphysically (“materially”) founded. The dialetheist may have a vacu-
ous notion of logical, formal incompatibility. But she does have a notion of
material incompatibility.



Fuzzy Logics Interpreted as Logics of Resources 31

Now for the final step: express the LNC via NOT. Take Aristotle’s
traditional formulation of the LNC, in Book Γ of the Metaphysics, and just
put in it our NOT. The formulation can be taken as a definition of “the
impossible”:

For the same thing to hold good and NOT hold good
simultaneously of the same thing and in the same respect
is impossible.18

(7)

“P1 does NOT hold good of x” should be a short form for “to x belongs
some property P2, which is materially incompatible with P1.” This does
not seem to be questionable by the dialetheist anymore, provided she has
understood NOT — and to understand NOT is to understand exclusion.
If the dialetheist refuses to subscribe to the characterization of NOT via
the intuitive notion of exclusion, she seems to actually end up as unable to
express the exclusion of any position (is she trying to exclude exclusion?).
And a dialetheism without the LNC stated in terms of NOT looks very
much like a trivialism (I totally agree with Dutilh Novaes, who presses a
point very similar to this one in her essay).19 Such a LNC, to use Aristotle’s
words, is “a principle which every one must have who knows anything about
being.”20

Does this reply to Dutilh Novaes’ challenge for (strong) paraconsistency,
namely, that of defining “P -contradictions, that is, contradictions that are
so threatening to a theory that they really compromise rational inference-
making within it”?21 To some extent, yes — if the steps of the argumen-
tation proposed above work. But the success for the version of the LNC
phrased in terms of NOT is very limited: for that LNC simply rules out the
simultaneous obtaining of reciprocally exclusionary states of affairs. The
question remains open of which are the exclusionary states of affairs (or
properties, etc.). And now the discussion between dialetheists and anti-
dialetheists can develop with a significant decrease in issues of question-
begging and clashes of intuitions. What is incompatible with what? Given
two properties P1 and P2, the question whether they are exclusive can in-
volve broadly empirical matters, difficult analyses of our conceptual toolkit
and/or of our use of ordinary language expressions. Some cases may be easy
to resolve; but others may produce battles of intuitions: are young and old
actually exclusive? Blue and green? True and false? Circular and square?
I have claimed that material exclusion is based on the content of facts, con-
cepts, or properties; but how do we know what the content of a concept

18 See Aristotle Met. 1005b 18–21 (Aristotle, 1984).
19 See (Dutilh Novaes, 2007, p. 487)).
20Arist. Met. 1005b 14–15 (Aristotle, 1984).
21 (Dutilh Novaes, 2007, p. 489).
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is, or which are the actual fields of applications of a property? The formal
characterization of NOT, of course, does not entail special commitments on
which are the specific properties, or concepts, or states of affairs, between
which it holds. Such commitments are fallible. We can come to believe that
some properties, or concepts, or states of affairs, are incompatible, and then
find out that they are not. Would this entail explosion, that is, anything
being derivable, and trivialism? Well, not: the standard strategy in this
case is simply to retract our previous assumption that they were.
So the dialetheist who has no troubles with our minimal (7) can still

object to other formulations of the LNC, e.g., because they are phrased
in terms of truth and falsity: those who rule out that any sentence could
be both true and false take truth and falsity as exclusionary concepts; the
dialetheist has qualms on this, and perhaps counterexamples to offer (say,
the Liar sentences). But the issue addressed here is whether all concepts
(or properties, etc.) are like that; and the dialetheist agrees that some
concepts (or properties, etc.) do rule out each other. This is the shared,
basic intuition NOT appeals to.
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Medieval Obligationes as a Regimentation of

‘the Game of Giving and Asking for Reasons’

Catarina Dutilh Novaes∗

1 Introduction

Medieval obligationes disputations were a highly regimented form of oral dis-
putation opposing two participants, respondent and opponent, and where
inferential relations between sentences took precedence over their truth or
falsity. In (Dutilh Novaes, 2005), (Dutilh Novaes, 2006) and (Dutilh Novaes,
2007, Ch. 3) I presented an interpretation of obligationes as logical games of
consistency maintenance; this interpretation had many advantages, in par-
ticular that of capturing the goal-oriented, rule-governed nature of this kind
of disputation by means of the game analogy. It also explained several of its
features that remained otherwise mysterious in alternative interpretations,
such as the role of impertinent sentences and why, while there is always a
winning strategy for respondent, the game remains hard to play. However,
the logical game interpretation did not provide a full account of the deontic
aspect of obligationes — of what being obliged to a certain statement re-
ally consists in — beyond the general (and superficial) commitment towards
playing (and winning) a game. After all, the very name invokes normativity,
so an interpretation of obligationes that does not fully account for the de-
ontic component seems to be missing a crucial aspect of the general spirit of
the enterprise. In order to amend this shortcoming in my previous analysis
I here present an extension of the game-interpretation based on the notion
of ‘the game of giving and asking for reasons’ — henceforth, GOGAR1 —
presented in Chapter 3 of R. Brandom’sMaking it Explicit (Brandom, 1994)
as constituting the ultimate basis for social linguistic practices. The basic

∗Thanks to Edgar Andrade-Lotero and Ole Thomassen Hjortland for comments on an
earlier draft of the paper.
1Following J. MacFarlane’s terminology, cf. http://johnmacfarlane.net/gogar.html.
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idea is that obligationes can be seen as a regimentation of some of the core
aspects of GOGAR.
What is to be gained from a comparison between obligationes and

GOGAR? From the point of view of the latter, the comparison can shed
light on its general logical structure: if obligationes really are a regimenta-
tion of GOGAR, then they can certainly contribute to making its structure
explicit (which is of course another crucial element of Brandom’s general
enterprise). Indeed, an obligatio is something of a Sprachspiel for GOGAR,
a simplified model whereby some of GOGAR’s properties can be made man-
ifest. As for obligationes, what can be gained from the comparison, besides
the emphasis on its fundamentally deontic nature, is a better understand-
ing of its general purpose. At first sight, this highly regimented form of
disputation, where truth does not seem to have any major role to play, may
seem like sterile scholastic logical gymnastics. But if it is put in the con-
text of GOGAR — which (presumably) captures the essence of our social,
linguistic and rational behaviors — then its significance would appear to go
well beyond the (mere) development of the ability to recognize inferential
relations and to maintain consistency.

2 GOGAR

A crucial element of the philosophical system presented by Brandom inMak-
ing it Explicit (and further expanded in several of his subsequent writings) is
the model of language use that he refers to as ‘the game of giving and asking
for reasons’. Brandom insists that language use and language meaningful-
ness can only be understood in the context of social practices articulating
information exchange and actions — linguistic speech-acts (typically, the
making of a claim) as well as non-linguistic actions.
In fact, GOGAR should account for what makes us social, linguistic and

rational animals. As Brandom construes it, GOGAR is fundamentally a
normative game in that the propriety of the moves to be undertaken by
the participants is at the central stage. It is, however, not a transcendental
kind of normativity, requiring an almighty judge outside the game to keep
track of the correctness of the moves undertaken; rather, the participants
themselves are in charge of evaluating whether the moves undertaken are
appropriate. It is a “deontic scorekeeping model of discursive practice”.
In GOGAR, we are all players (speakers) and scorekeepers concomitantly;
we undertake moves and keep track of everybody’s moves (including our
own) at the same time. The focus on (giving and asking for) reasons is
an important aspect of how the model captures the concept of rationality:
we are responsible for the claims we make, and thus must be prepared to
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provide reasons2 for them when challenged. Underlying this fact is the
idea of a logical articulation of contents such that some contents count as
appropriate reasons for other contents.
In principle, as a general model of language use, GOGAR should en-

compass all different kinds of speech-acts: assertions, questions, but also
promises, orders, expressions of doubt etc. However, for Brandom there is
one fundamental kind of speech-act in the game, namely that of making
an assertion.3 An assertion is both something that can count as a reason
(a justification) for another assertion and something that may constitute
a challenge — typically, when a speaker S makes an assertion incompati-
ble with something previously said by T — and thus provoke the need for
further reasons (T must defend the original assertion): hence, giving and
asking for reasons.
The need to defend one’s assertions threatened by challenges through

further reasons indicates that one is somehow responsible for one’s asser-
tions. This is indeed the case according to the GOGAR model, and this fact
is accounted for by the absolutely crucial concept of doxastic commitment.
Just as a promise creates the commitment to fulfill what has been promised,
the making of an assertion creates the commitment to defend it, i.e., to have
had good reasons to make it. This is because one often relies on the infor-
mation conveyed by an assertion made by another person in order to assess
a particular situation and then act upon the assessment; but if false infor-
mation is transmitted, then the assessment will probably be mistaken, and
the action in question will probably not have the desired outcome; it may
even have deleterious consequences for the agent. In such cases, it is fair to
say that the person having conveyed the incorrect information is responsible
for the infelicitous outcome, just as a reckless driver is responsible for the
accidents he/she (directly or indirectly) causes. If somebody shouts ‘fire!’ as
a prank in a completely full stadium, for example, this will probably cause
considerable mayhem, and the infelicitous joker will be held accountable for
all the damage caused. So given the potential practical consequences of an
assertion, it is not surprising at all that liability should be involved in the
making of an assertion.
For Brandom, the commitment to the content4 of an assertion in fact goes

beyond the assertion itself: one is also committed to everything that follows
from the original assertion, i.e., everything that can be inferred from it. The

2Etymologically, rationality comes from ratio, ‘reason’ in Latin.
3 “The fundamental sort of move in the game of giving and asking for reasons is making
a claim — producing a performance that is propositionally contentful in that it can be
the offering of a reason, and reasons can be demanded for it.” (Brandom, 1994, p. 141).
4 It is not entirely clear to me though whether Brandom sees commitments as having
contents or sentences or claims as their objects, but it seems to me that contents would
be the most appropriate objects of commitments.
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inferential relations between assertions are a primitive element of Brandom’s
system (codified in terms of material inferences, not formal ones); as he
sometimes says, they are “unexplained explainers” (Brandom, 1994, p. 133).
Material inferences are painstakingly discussed in (Brandom, 1994, Ch. 2),
but for our purposes what is important is to realize that commitment to a
content transfers over to other contents by means of inferential relations.
But besides being committed to contents, there is another primitive de-

ontic status that a speaker may or may not enjoy with respect to contents:
entitlement. From the point of view of a scorekeeper,5 for a speaker S to be
entitled to asserting a given content amounts to S being in the position to
offer grounds that justify belief in the content, and thus the making of the
corresponding assertion; this deontic status is attributed when the speaker
has good (enough) reasons to believe the content to be the case. Brandom
remarks that “commitment and entitlement correspond to the traditional
deontic primitives of obligation and permission” (Brandom, 1994, p. 160);
he rejects this terminology because he wishes to avoid the stigmata of norms
associated with hierarchy and commands (as noted above, the scorekeeping
is done horizontally by all participants). But ultimately, a commitment is
indeed an obligation, and an entitlement is indeed a permission, and thus
being committed to a content amounts to being obliged to it in exactly the
same sense of being obliged during an obligatio disputation (as we shall
see): one has a duty towards a certain content, which transfers over to all
the contents that follow from it.
From the two primitive concepts of commitment and entitlement, Bran-

dom derives the equally important concept of incompatibility: content p
being incompatible with content q amounts to commitment to p precluding
entitlement to q. It is not so much that it is factually impossible for one to
be committed to p while believing oneself to be entitled to q; this can occur,
just as one can make conflicting promises and hold inconsistent beliefs. But
again, this is a matter of deontic scorekeeping: from the point of view of
the scorekeepers, if a speaker is committed to p there is a whole series of
contents q, t, etc. to which the speaker in question is simply not entitled as
long as he maintains his commitment to p. But if he nevertheless insists in
being committed to p and entitled to q at the same time, then he is simply
making a bad move within GOGAR.
Brandom correctly notices that incompatibility, as much as entailment,

is essentially a relation between sets of contents, not between contents them-

5The deontic statuses of commitment and entitlement are always perspectival, i.e. de-
fined by the deontic attitudes of (self-)attributing commitments and entitlements of each
scorekeeper. “Such statuses are creatures of the practical attitudes of the members of a
linguistic community — they are instituted by practices governing the taking and treating
of individuals as committed.” (Brandom, 1994, p. 142).
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selves.6 Take a set of three contents, e.g., those expressed by the sentences
‘Every man is running’, ‘Socrates is a man’ and ‘Socrates is not running’.
Commitment to either one of the two first contents alone does nor pre-
clude entitlement to the third content, but commitment to both of them
does preclude entitlement to the third, just as commitment to the first two
contents simultaneously entails commitment to the content ‘Socrates is run-
ning’. This aspect will be significant for the comparison with obligationes
later on, as it hints at the fundamentally dynamic nature of the GOGAR
model: every new assertion made requires the recalibration of everybody’s
deontic statuses by the scorekeepers — of the asserter, in particular, but in
fact of everybody else as well, as GOGAR also accounts for inter-personal
transmission of entitlement by testimony. In other words, a speaker’s deon-
tic status — her commitments and entitlements — is modified every time an
assertion is made, more saliently but not exclusively by the speaker herself.
Indeed, there seem to be four main sources of entitlement according to

the GOGAR model.

1. Interpersonal, intracontent deferential entitlement: Speaker 1 is en-
titled to (asserting) content p because speaker 2, a reliable source,
asserted p.

2. Intrapersonal, intercontent inferential entitlement: Speaker 1 is en-
titled to (asserting) q because she is entitled to (asserting) p and p
entails q.

3. Perception: Speaker 1 is entitled to (asserting) p because she has had
a (reliable) perceptual experience corresponding to p.

4. Default entitlement: ‘free moves’, the contents entitlement to which
is shared by all speakers insofar as these contents constitute common
knowledge — everybody knows it, and everybody knows that every-
body knows it.

A final point I wish to address in my brief presentation of GOGAR
is the notion of inference, more specifically material inference. Brandom
criticizes the formalist view of inference, according to which every valid
inference is an instance of a formally valid schema; rather, the inferential
relations that are the primitive elements of his inferential semantics are of a
conceptual nature, while also firmly embedded in practices: “Inferring is a
kind of doing.”(Brandom, 1994, p. 91) The focus on the notion of material
inference also echoes important features of obligationes, as in the latter

6 (Brandom, 2008, Lect. 5). The cases of relations involving single contents can be seen
as limit-cases, relating singleton sets.
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framework the relation of ‘following’ (sequitur) in question is not restricted
to formally valid schemata.7

3 Medieval obligationes

An obligatio disputation has two participants, Opponent and Respondent.
In the case of positio, the most common and widely discussed form of obliga-
tiones, the game starts with Opponent putting forward a sentence, usually
called the positum, which Respondent must accept for the sake of the dis-
putation, unless it is contradictory in itself. Opponent then puts forward
other sentences (the proposita), one at a time, which Respondent must
either grant, deny or doubt on the basis of inferential relations with the
previously accepted or denied sentences — or, in case there are none (and
these are called impertinent8 sentences) on the basis of the common knowl-
edge shared by those who are present. In other words, if Respondent fails
to recognize inferential relations or if he does not respond to an impertinent
sentence according to its truth-value within common knowledge, then he
responds badly. Respondent ‘loses the game’ if he concedes a contradictory
set of propositions. The disputation ends if and when Respondent grants a
contradiction, or else when Opponent says ‘cedat tempus’, ‘time is up’. Op-
ponent and possibly a larger panel of masters present at the disputation are
in charge of keeping track of Respondent’s replies and of evaluating them
once the disputation is over.
An obligatio disputation can be represented by the following tuple:

Ob = 〈KC ,Φ,Γ, R(φn)〉

KC is the state of common knowledge of those present at the disputation.
Φ is an ordered set of sentences, namely the very sentences put forward
during the disputation. Γ is an ordered set of sets of sentences, which are
formed by Respondent’s responses to the various φn. Finally, R(φn) is a
function from sentences to the values 1, 0, and ?, corresponding to the rules
Respondent must apply to reply to each φn.
The rules for the positum are

• R(φ0) = 0 iff φ0  ⊥,

• R(φ0) = 1 iff φ0 1 ⊥.
7 Indeed, the terminology of formal vs. material consequences, from which the terminology
used by Brandom (directly borrowed from Sellars) ultimately derives, was consolidated
in the 14th century; see (Dutilh Novaes, 2008).
8Throughout the text, I will use the terms ‘pertinent’ and ‘impertinent’, the literal trans-
lations of the Latin terms ‘pertinens’ and ‘impertinens’. But notice that they are often
translated as ‘relevant’ and ‘irrelevant’, for example in the translation of Burley’s treatise
(Burley, 1988).
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The rules for the proposita are

• Pertinent propositions: Γn−1  φn or Γn−1  ¬φn;

– If Γn−1  φn then R(φn) = 1;

– If Γn−1  ¬φn then R(φn) = 0;

• Impertinent propositions: Γn−1 1 φn and Γn−1 1 ¬φn;

– If KC  φn then R(φn) = 1;

– If KC  ¬φn then R(φn) = 0;

– If KC 1 φn and KC 1 ¬φn then R(φn) =?.

As the disputation progresses, different sets of sentences are formed at
each round, namely the sets formed by the sentences that Respondent has
granted and the contradictories of the sentences he has denied. These sets
Γn can be seen as models of the successive stages of deontic statuses of
Respondent with respect to the commitments undertaken by him at each
reply. The sets Γn are defined as follows:

• If R(φn) = 1 then Γn = Γn−1 ∪ {φn};

• If R(φn) = 0 then Γn = Γn−1 ∪ {¬φn};

• If R(φn) =? then Γn = Γn−1.

For reasons of space, I shall keep my presentation of obligationes very
brief. The interested reader is urged to consult the vast primary and sec-
ondary literature on the topic,9 but further aspects of the framework will
be discussed in the next comparative sections as well.

4 Comparison

In this section I undertake a systematic comparison of the two frameworks.
The emphasis will be laid on similarities, but I will also mention some im-
portant dissimilarities. Essentially, what is at stake during an obligatio dis-
putation is the ability to appreciate the (logical and practical) consequences
of the commitments undertaken by Respondent. Responded is committed
(i.e. obligated) to the sentences he grants as well as to the contradictories
of the sentences he denies. The deontic status of entitlement plays a less
prominent role within obligationes, as the point really is to explore what
one is obligated to once one obligates oneself to the positum. Besides this

9My own previous work (Dutilh Novaes, 2005), (Dutilh Novaes, 2006), (Dutilh Novaes,
2007) can serve as a starting point.
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general and fundamental point of similarity, there are several specific simi-
larities between GOGAR’s and obligational concepts:10

The key role of inferential relations In both models, (intra-personal,
inter-content) transfer of commitment takes place through inferential rela-
tions, not restricted to formally valid inferences. By means of the transfer of
commitment, Respondent is obligated to everything that follows from what
he has granted/denied so far, as well as to the contradictories of what is
incompatible (repugnans) with what he has granted/denied so far. Indeed,
the notion of ‘repugnant’ sentences corresponds precisely to Brandom’s no-
tion of incompatibility.

The relation of inference relates sets of sentences/contents Both
frameworks correctly treat the relation of inference (and the corresponding
transfer of commitment) as relating sets of sentences to sets of sentences (al-
though usually the consequent set is a singleton). Indeed, within rational
discursive practices, what counts are not so much the inferential relations
between individual sentences/contents; as a matter of fact, we are usu-
ally committed to a wide range of sentences/contents. It is the interaction
between these different commitments that counts to define our further com-
mitments: what very often happens is that commitment to p alone or to q
alone does not commit the speaker to t, but joint commitment to p and to
q does. In the obligational framework, every propositum that is granted or
denied modifies Respondent’s commitments.

The dynamic nature of both models A corollary of the previous point
is that both models are dynamic, i.e., temporality is an important factor.
In (Dutilh Novaes, 2005), I have explored in detail the dynamic nature of
obligationes, and GOGAR is dynamic in very much the same way. Both
models deal with phenomena that take place in successive steps, and each
step is to some extent determined by the previous steps (a feature that
is accurately captured by the game metaphor). In both cases, the order
of occurrence of these steps is crucial. For example, if the positum of an
obligatio is ‘Every man is running’, and the next step is ‘You are running’,
this propositum must be denied as impertinent and false (since nothing
has been said about Respondent being a man so far). However, if after the
same positum ‘You are a man’ is proposed and accepted (as impertinent and
true), and afterward ‘You are running’ is proposed, then the latter should

10For reasons of space, I here treat only the most salient points of similarity. Notice
though that there are others, for example the role played by pragmatic elements in both
cases.
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be accepted as following from what has been granted so far, contrary to the
first scenario.

Impertinent propositions and default entitlement Even though ob-
ligationes deal essentially with commitments and less so with entitlements,
one specific kind of entitlement is nevertheless present in the framework.
While Respondent’s replies to pertinent sentences are fully determined by
his previous commitments, there are no commitments concerning imperti-
nent sentences (as this is exactly what they are: thus far uncommitted-to
contents). What must determine his replies to impertinent sentences are
exactly the uncontroversial entitlements shared by all those who are present
at the disputation. These include circumstantial information (such as being
in Paris or being in Rome), as well as very general common knowledge, for
example that the Pope is a man. In other words, Respondent is entitled to
accepting, denying or doubting a sentence on the basis of his factual knowl-
edge concerning them; these are Brandom’s ‘free moves’, with the same
social dimension insofar as it concerns common knowledge.

Scorekeeping Within GOGAR, scorekeeping is something of a metaphor
rather than a reality — nobody explicitly writes down the commitments
and entitlements of other speakers. Scorekeeping is rather something done
tacitly, and usually one is not even really aware of doing it. But within
obligationes, scorekeeping is for real. This is exactly what I mean when I
say that the latter is a regimented model of the former: some implicit, tacit
elements of GOGAR are made explicit and tangible within obligationes.
Indeed, those present at the disputation (in particular Opponent) explic-
itly keep score of Respondent’s successive deontic statuses of commitments
during a disputation; when he then fails to recognize a previously taken
commitment, he responds badly and loses the game. Moreover, once the
disputation is over, Respondent’s performance is explicitly evaluated by a
panel of Masters present at the occasion.

Caveats While the resemblance between the two frameworks is over-
whelming, there are of course important points of dissimilarity. More specif-
ically, and as noted before, obligationes is a less encompassing model, treat-
ing only a subclass of the phenomena captured by GOGAR.

• Obligationes only account for the commitments and entitlements of
one speaker, namely Respondent.

• Asking for reasons is not part of an obligatio: Opponent cannot chal-
lenge Respondent, except by saying ‘cedat tempus’ if Respondent
grants a contradiction.
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• Obligationes offer no extensive treatment of the different kinds of en-
titlements and of the mechanisms of transfer of entitlement.

• GOGAR is meant to be a model of the very meaningfulness of lan-
guage — i.e., the relations of commitment-preserving entailment and
entitlement-preserving entailment define the meaning of utterances —
whereas obligationes operate with a language that is meaningful from
the start.

For these reasons, an obligatio is best seen as a simplified model of how
a speaker must behave towards assertions. This simplification may on the
one hand entail loss of generality, but on the other hand it may offer a
viewpoint from which some properties of our social discursive practices are
made manifest and can thus more easily be studied.

5 What is gained through the comparison?

For obligationes

The deontic nature of obligationes Ever since scholars of medieval
philosophy became interested in obligationes halfway the 20th century, the
very name of this form of disputation was a source of puzzlement. In what
sense exactly did such a disputation consist in an obligation? Who was
obliged, and what was he obliged to? Although some modern analyses did
emphasize its deontic nature (see (Knuuttila & Yrjonsuuri, 1988)), it is fair
to say that the deontic component was essentially overlooked in most of
them (including my own game interpretation). On a personal note, I can
say that I only fully understood how thoroughly deontic the obligationes
framework really was against the background of GOGAR, and in particular
by means of the concept of commitment.
Recall that I have accounted for the notion of commitment to a state-

ment/content in terms of the practical consequences that the reliance on its
truth can have for other people’s lives, insofar as they assume the state-
ment to be true unless they have good reasons not to (Brandom’s ‘default
entitlement’ and Lewis’ ‘convention of truthfulness and trust’) and insofar
as they make practical decisions on the basis on their reliance on its truth.
Of course, given the somewhat ‘artificial’ setting of an obligatio disputa-
tion, no practical consequences are to be expected. Nevertheless, the basic
idea seems to be that commitment — obligation — transfers over by means
of inferential relations: if respondent is committed to φn and φn implies
φm, then respondent is also committed to φm. Now, since respondent is
always committed to at least one statement, the positum, this first commit-
ment sets the whole wheel of commitments in motion. So an obligatio is not
only about logical relations between sentences and consistency maintenance;
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more importantly, it is about the deontic statuses of commitments and en-
titlements and the (intrapersonal, inter-content) mechanisms of inheritance
of these statuses.

The general purpose of obligationes More pervasive and significant
than the puzzlement caused by the term obligationes itself is the still wide-
spread perplexity of scholars concerning the very purpose of such disputa-
tions: after all, what’s the point? What are obligationes about? They are
not about truth, as more straightforward forms of disputation are, given that
the positum is generally, and conspicuously, a possible but false sentence.
Many of the modern interpretations have sought to establish a rationale for
obligationes — a logic of conditionals, a framework for belief revision —,
but the shortcomings of each of these interpretations only contributed to
the growing frustration related to the apparent elusiveness of the ‘point’
of obligationes. It couldn’t possibly be a mere form of testing a student’s
skills, i.e. “schoolboy’s exercise”, as suggested in the early secondary liter-
ature of the 1960’s. If there is no real purpose to it beyond the intricate
logical structure of the framework, then it might be merely sterile scholastic
logical gymnastics after all, just as most of the techniques of scholasticism
according to the standard post-scholastic (i.e. Renaissance) criticism.
But when put in the context of GOGAR, obligationes seem to provide a

model of what it means to act and talk rationally, i.e. to take part in (mainly,
but not exclusively) discursive social practices. Thus viewed, obligationes
could also most certainly fulfill an important pedagogical task, namely that
of teaching a student how to argue rationally — i.e., how to argue mind-
ful of one’s entitlements and commitments, of the reasons (grounds) for
endorsing or rejecting statements, and of the need to defend one’s own com-
mitments — but its importance clearly goes beyond merely pedagogical
purposes. Interestingly, throughout the later Middle Ages the format of
obligationes was extensively adopted for scientific investigations, precisely
because it provides a good model for rational argumentation. In a wide
variety of contexts (ranging from logic to theology, from ethics to physics),
one encounters extensive use of the obligationes vocabulary and concepts in
the presentation of arguments. Thus seen, the framework is far from being
a futile logical exercise: rather, it presents a regimentation of some crucial
aspects of what it is to argue and act rationally, of which GOGAR is also a
(more encompassing) model.

For the game of giving and asking for reasons

Underlying logical structure While in terms of the ‘bigger picture’, it
is mostly obligationes that can benefit from the comparison, on the level
of (logical) detail GOGAR has much to learn from obligationes. Ever since
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the publication of (Brandom, 1994), Brandom has been refining the logical
structure underlying GOGAR in particular and his inferentialist semantics
in general, especially through the development of what he calls ‘incompati-
bility semantics’. Nevertheless, and despite the powerfulness of the modern
logical techniques often employed by Brandom and his collaborators, these
fairly recent developments are still somewhat overshadowed by the centuries
of research (involving a very large number of logicians) on the logic of obli-
gationes.11 Indeed, the (primary and secondary) literature on the topic
contains sophisticated analyses of the logical and pragmatic properties of
the framework, which are (presumably) applicable to GOGAR so that the
comparison can contribute to making GOGAR’s logical structure explicit.
For example, I have proved elsewhere (Dutilh Novaes, 2005) that the class

of models satisfying Γn becomes smaller in the next step of the game only if
φn+1 is impertinent; if φn+1 is pertinent, then the class of models satisfying
Γn is the same as the class of models satisfying Γn+1, even though Γn and
Γn+1 are not the same.

12 This result can be interpreted in terms of GOGAR
in the following manner: when a speaker makes an assertion p which actually
follows from any sentence or set of sentences previously asserted by him,
then his set of commitments is thereby not augmented. In other words, his
deontic status remains the same, as he was de facto already committed to p.
Mixing the two vocabularies, one can say that a speaker’s deontic status is
modified only if he asserts an impertinent sentence; assertions of pertinent
sentences have no effect whatsoever in this sense. Now, this is just one
example of how, given that the obligationes framework is a more regimented
form of the rational, discursive practices also modeled by GOGAR, such
logical properties are more easily investigated against the background of
the former rather than the latter.

Strategic perspective When speaking of ‘the game of giving and asking
for reasons’, Brandom seems to be taking seriously the analogy between the
rational discursive practices presumably captured by GOGAR and actual
games. It is undoubtedly also a reference to Wittgenstein’s language-games,
but the question immediately arises: how much of a game is GOGAR, ac-
tually? To the best of my knowledge, Brandom does not further explore the
comparison to games, just as he does not discuss specific game-theoretic
properties of GOGAR; this seems to me, however, to be a promising line
of investigation. Two important game-theoretical properties that come to
mind are the goal(s) to be attained within a certain game, i.e. the expected

11Obligationes were one of the main topics of investigation in the late medieval Latin
tradition, as attested by the very large number of surviving texts ranging from the 12th

to the 15th Century.
12Assuming, of course, that Respondent has replied according to the rules.
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outcome, and the possible strategies to play the game (usually, one is in-
terested in maximizing the payoff, i.e. in the ratio of best possible outcome
vs. the most economical strategy). Based on these two concepts, it would
seem that GOGAR is in fact a family of games, not a single game, as each
particular game of the GOGAR family has its own goals. Most of them are
cooperative games, where participants have a common goal rather than that
of beating the opponent, e.g., dialogues where people exchange information
and coordinate their actions. Nevertheless, there are of course numerous
situations of discursive practices where the point really is to beat the op-
ponent, such as, e.g., in a court of law. In each case, different strategies
must be employed: in the case of cooperative games, Gricean maxims may
be seen as a good account of strategies to maximize understanding between
the parties; in the case of competitive games, however, a completely differ-
ent strategy must be used, one where deceit, for instance, may even have
some role to play.
Obligationes is obviously a competitive game: if Respondent grants a

contradiction, he loses the game; but if he is able to maintain consistency,
he beats Opponent. And even though the medieval authors themselves did
not account for obligationes in terms of games (nor did they have knowledge
of the specific game-theoretical concepts just discussed), medieval treatises
on obligationes are filled with strategic advice for Respondent on how to per-
form well during an obligatio. These treatises present not only rules defining
the legitimate moves within the disputation but also practical, strategic ad-
vice.13 Some of the strategic rules presented in Burley’s treatise are: “ One
must pay particular attention to the order [of the propositions]” (Burley,
1988, p. 385); “When a possible proposition has been posited, it is not ab-
surd to grant something impossible per accidens” (Burley, 1988, p. 389);
“When a false contingent proposition is posited, one can prove any false
proposition that is compossible with it” (Burley, 1988, p. 391).
The point here is that the strategic perspective present in these obliga-

tiones treatises can very likely be transposed to the GOGAR framework
to produce interesting results. In the case of GOGAR games where the
different speakers are truly opposed to one another and the point is really
to beat the opponent, then the strategic tips from the obligationes trea-
tises can be used straightforwardly. But even in the case of cooperative
games of GOGAR, the obligational strategies may still be quite helpful, as
they essentially describe procedures that may enable one to maintain consis-
tency — certainly a desirable outcome in the context of rational discursive
practices. The heart of the matter is that GOGAR does not emphasize
the player-perspective: rather, Brandom’s description of GOGAR is that of

13 “It is important to know that there are some rules that constitute the practice of this
art and others that pertain to its being practiced well.” (Burley, 1988, p. 379)
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the theorist standing outside the game and offering a model to explain the
use(s) and meaningfulness of language. In this sense, the player-perspective
offered by obligationes may come as an interesting complement.

The role of doubting Brandom presents GOGAR as having only one
quintessential kind of move, i.e. making a claim. We have seen that chal-
lenging is also an important move, but a challenge is made by means of
the assertion of an incompatible content. In contrast, obligationes feature
three main kinds of moves for Respondent: granting, denying and doubting.
Granting obviously corresponds to asserting, and in a sense, denying is also
a kind of assertion within the obligationes framework, namely the assertion
of the contradictory of the denied sentence. I have also pointed out that
challenging is not a legitimate move for either Respondent or Opponent, a
fact that is related to the regimented and simplified nature of obligationes
as a model of rational discursive practices. But GOGAR claims to be much
more encompassing than obligationes does, so while it seems reasonable for
obligationes to leave some important elements out, the same does not hold
of GOGAR. Now, GOGAR has no resources to deal with the phenomenon
of not being sure, of recognizing that one does not dispose of sufficient
grounds to assert a content or its contradictory (knowing that you don’t
know), whereas this seems to be a very important element of our rational
discursive practices. In contrast, by having doubting as one of the legiti-
mate moves for Respondent, the obligational framework fares batter in this
respect.
It might be argued that doubting is not relevant for GOGAR insofar as it

has no impact on a speaker’s deontic status, as it is simply the lack of com-
mitment or entitlement; not so. A particular rule presented in Kilvington’s
treatment of obligationes in his Sophismata (Kilvington, 1990, sophism 48)
shows that doubting can indeed alter a speaker’s deontic status. The rule
is the following: if ‘p implies q’ is a good consequence, and if Respondent
has doubted p, then he must not deny q, i.e., he is not entitled to ¬q.
This is because, in a valid consequence, if the consequent is (known to be)
false, then the antecedent will also be (known to be) false, so if Respondent
has doubted the antecedent, he must either doubt or grant the consequent.
This is just an example of the intricacies of the logic of doubting and of
how doubting can indeed have an impact on one’s deontic status. The obli-
gational literature is filled with many more of such examples, in particular
in the treatments of dubitatio,14 one of the forms of an obligational dis-

14 In a dubitatio, the first sentence (the obligatum) is not a positum, it is a dubium, a
sentence which Respondent must doubt for the sake of the disputation just as he accepts
the positum in a positio; he must then see what follows (in terms of his commitments and
entitlements) from having doubted the first sentence.
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putation along with positio (which is in some sense the ‘standard’ form of
obligationes, and the one discussed in this text so far). Thus, I suggest
that GOGAR should pay more attention to speech-acts other than asser-
tions as also having an impact on a speaker’s deontic status — doubting in
particular, as shown within the obligational framework.

6 Conclusion

In this brief comparative analysis of GOGAR and medieval obligationes I
hope to have indicated how fruitful a systematic comparison between the
two frameworks can be. For reasons of space I have here merely sketched
such a comparison, and a more thorough analysis shall remain a topic for
future work.

Catarina Dutilh Novaes
Department of Philosophy and ILLC, University of Amsterdam
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Truth Value Intervals, Bets, and Dialogue Games

Christian G. Fermüller∗

Fuzzy logics in Zadeh’s ‘narrow sense’ (Zadeh, 1988), i.e., truth functional
logics referring to the real closed unit interval [0, 1] as set of truth val-
ues, are often motivated as logics for ‘reasoning with imprecise notions and
propositions’ (see, e.g., (Hájek, 1998)). However the relation between these
logics and theories of vagueness, as discussed in a prolific discourse in ana-
lytic philosophy (Keefe & Rosanna, 2000), (Keefe & Smith, 1987), (Shapiro,
2006) is highly contentious. We will not directly engage in this debate here
but rather pick out so-called interval based fuzzy logics as an instructive
example to study

1. how such logics are usually motivated informally,

2. what problems may arise from these motivations, and

3. how betting and dialogue games may be used to analyze these logics
with respect to more general principles and models of reasoning.

The main technical result1 of this work consists in a characterization of an
important interval based logic, considered, e.g., in (Esteva, Garcia-Calvés,
& Godo, 1994), in terms of a dialogue cum betting game, that generalizes
Robin Giles’s game based characterization of Łukasiewicz logic (Giles, 1974),
(Giles, 1977). However, our aim is to address foundational problems with
certain models of reasoning with imprecise information. We hope to show
that the traditional paradigm of dialogue games as a possible foundation of
logic (going back, at least, to (Lorenzen, 1960)) combined with bets as ‘test
cases’ for rationality in the face of uncertainty might help to sort out some
of the relevant conceptual issues. This is intended to highlight a particular
meeting place of logic, games, and decision theory at the foundation of a
field often called ‘approximate reasoning’ (see, e.g., (Zadeh, 1975)).

∗This work is supported by FWF project I143–G15.
1Due to limited space, we state propositions without proofs.
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1 T-norm based fuzzy logics and bilattices

Petr Hájek, in the preface of his influential monograph on mathematical
fuzzy logic (Hájek, 1998) asserts:

The aim is to show that fuzzy logic as a logic of imprecise (vague)
propositions does have well developed formal foundations and that
most things usually named ‘fuzzy inference’ can be naturally under-
stood as logical deduction. (Hájek, 1998, p. viii)

As the qualification ‘vague’, added in parenthesis to ‘imprecise’, betrays,
some terminological and, arguably, also conceptional problems may be lo-
cated already in this introductory statement. These problems relate to
the fact that fuzzy logic is often subsumed under the general headings of
‘uncertainty’ and ‘approximate reasoning’. In any case, Hajek goes on to
introduce a family of formal logics, based on the following design choices
(compare also (Hájek, 2002)):

1. The set of degrees of truth (truth values) is represented by the real
unit interval [0, 1]. The usual order relation ≤ models comparison of
truth degrees; 0 represents absolute falsity, and 1 represents absolute
truth.

2. The truth value of a compound statement shall only depend on the
truth values of its subformulas. In other words: the logics are truth
functional.

3. The truth function for (strong) conjunction (&) should be a continu-
ous, commutative, associative, and monotonically increasing function
∗ : [0, 1]2 → [0, 1], where 0 ∗ x = 0 and 1 ∗ x = x. In other words: ∗
is a continuous t-norm.

4. The residuum ⇒∗ of the t-norm ∗ — i.e., the unique function ⇒∗:
[0, 1]2 → [0, 1] satisfying x⇒∗ y = sup{z | x ∗ z ≤ y} — serves as the
truth function for implication.

5. The truth function for negation is λx[x⇒∗ 0].

Probably the best known logic arising in this way is Łukasiewicz logic L
(Łukasiewicz, 1920), where the t-norm ∗L that serves as truth function for
& is defined as x ∗L y = max(0, x + y − 1). Its residuum ⇒L is given by
x ⇒L y = min(1, 1 − x + y). A popular alternative choice for conjunction
takes the minimum as its truth function. Besides ‘strong conjunction’ (&),
also this latter ‘weak (min) conjunction’ (∧) can be defined in all t-norm
based logics by A ∧ B def

= A&(A → B). Maximum as truth function for
disjunction (∨) is always definable from ∗ and ⇒∗, too.



Truth Value Intervals 53

Other important logics, like Gödel logic G, and Product logic P, can
be obtained in the same way, but we will confine attention to L, here. At
this point we like to mention that a rich, deep, and still growing subfield
of mathematical logic, documented in hundreds of papers and a number of
books (beyond (Hájek, 1998)) is triggered by this approach. Consequently
it became evident that degree based fuzzy logics are neither a ‘poor man’s
substitute for probabilistic reasoning’ nor a trivial generalization of finite-
valued logics.
A number of researchers have pointed out that, while modelling degrees

of truth by values in [0, 1] might be a justifiable choice in principle, it is
hardly realistic to assume that there are procedures that allow us to assign
concrete values to concrete (interpreted) atomic propositions in a coherent
and principled manner. While this problem might be ignored as long as
we are only interested in an abstract characterization of logical consequence
in contexts of graded truth, it is deemed desirable to refine the model by
incorporating ‘imprecision due to possible incompleteness of the available
information’ (Esteva et al., 1994) about truth values. Accordingly, it is
suggested to replace single values x ∈ [0, 1] by whole intervals [a, b] ⊆ [0, 1]
of truth values as the basic semantic unit assigned to propositions. The
‘natural truth ordering’ ≤ can be generalized to intervals in different ways.
Following (Esteva et al., 1994) we arrive at these definitions:

Weak truth ordering: [a1, b1] ≤∗ [a2, b2] iff a1 ≤ a2 and b1 ≤ b2
Strong truth ordering: [a1, b1] ≺ [a2, b2] iff b1 ≤ a2 or [a1, b1] = [a2, b2]

On the other hand, set inclusion (⊆) is called imprecision ordering in this
context. The set of closed subintervals Int[0,1] of [0, 1] is augmented by the
empty interval ∅ to yield so-called enriched bilattice structures 〈Int[0,1],≤∗,
0, 1, ∅, L,N∗〉 as well as 〈Int[0,1],≺, 0, 1, ∅, L,N∗〉, where L is the standard
lattice on [0, 1], with minimum and maximum as operators, and N∗ is the
extension of the negation operator N to intervals; in our particular case
N∗([a, b]) = [1− b, 1− a] and N∗(∅) = ∅.
Quite a number of papers have been devoted to the study of logics

based on such interval generated bilattices. Let us just mention that the
Ghent school of Kerre, Deschrijver, Cornelis, and colleagues has produced
an impressive amount of work on interval bilattice based logics (see, e.g.,
(Cornelis, Deschrijver, & Kerre, 2006)).
While it is straightforward to generalize both types of conjunction (t-

norm and minimum) as well as disjunction (maximum) from [0, 1] to Int[0,1]

by applying the operators point-wise, it seems less clear how the ‘right’
generalization of the truth function for implication should look like. In
(Cornelis, Arieli, Deschrijver, & Kerre, 2007), (Cornelis, Deschrijver, &

Kerre, 2004) [a, b]⇒∗
C [c, d]

def
= [min(a⇒ c, b⇒ d), b⇒ d] is studied, but in



54 Christian G. Fermüller

(Esteva et al., 1994) the authors suggest [a, b] ⇒∗
E [c, d]

def
= [b ⇒ c, a ⇒ d].

As has been pointed out in (Hájek, n.d.) there seems to be a kind of trade off
involved here. While ⇒∗

C preserves a lot of algebraic structure — in partic-
ular it yields a residuated lattice which contains the underlying lattice over
[0, 1] as a substructure — the function ⇒∗

E is not a residuum, but leads
to the following desirable preservation property that is missing for ⇒∗

C . If
M2 is a precisiation ofM1 (meaning: for each propositional variable p,M2

assigns a subinterval of the interval assigned to p byM1), than any formula
satisfied byM1 is also satisfied byM2.

2 Below, we will try to show that a
game based approach might justify the preference of ⇒∗

E over ⇒∗
C against

a background that takes the challenge of deriving formal semantics from
first principles about logical reasoning more seriously than the mentioned
literature on ‘interval logics’.

2 Worries about truth functionality

It is interesting to note that both, (Esteva et al., 1994) and (Cornelis et al.,
2007), (Cornelis et al., 2004), refer to Ginsberg (Ginsberg, 1988), who ex-
plicitly introduced bilattices following ideas of (Belnap, 1977). Most promi-
nently Ginsberg considers B = 〈{0,⊤,⊥, 1},≤t,≤k,¬〉 as endowed with the
following intended meaning:

• 0 and 1 represent (classical) falsity and truth, respectively, ⊤ rep-
resents ‘inconsistent information’ and ⊥ represents ‘no information’.
The idea here is that truth values are assigned after receiving relevant
information from different sources. Accordingly ⊤ is identified with
the information set {0, 1}, ⊥ with ∅ and the classical truth values with
their singleton sets.

• ≤t, defined by 0 ≤t ⊤/⊥ ≤ 1, is the ‘truth ordering ’.

• ≤k, defined by ⊥ ≤t 0/1 ≤ 1, is the ‘knowledge ordering ’.

• Negation is defined by ¬(0) = 1, ¬(1) = 0, ¬(⊤) = ⊤, ¬(⊥) = ⊥.

While the four ‘truth values’ of B may justifiably be understood to represent
different states of knowledge about propositions, it is very questionable to
try to define corresponding ‘truth functions’ for connectives other than nega-
tion. Indeed, it is surprising to see how many authors3 followed (Belnap,
1977) in defending a four valued, truth functional logic based on B. It should
be clear that, in the underlying classical setting that is taken for granted
by Belnap, the formula A ∧ ¬A can only be false (0), independently of the

2Here, a formula is defined to be satisfied if it evaluates to the degenerate interval [1, 1].
3Dozens of papers have been written about Belnap’s 4-valued logic.



Truth Value Intervals 55

kind of information, if any, we have about the truth of A. On the other
hand, if we neither have information about A nor about B, then B ∧ ¬A
could be true as well as false, and therefore ⊥ should be assigned not only
to A, B, and ¬A, but also to B ∧ ¬A (in contrast to A ∧ ¬A). This simple
argument illustrates that knowledge does not propagate compositionally —
a well known fact that, however, has been ignored repeatedly in the liter-
ature. (For a recent, forceful reminder on the incoherency of the intended
semantics for Belnap’s logic we refer to (Dubois, n.d.).)
In our context this warning about the limits of truth functionality is

relevant at two separate levels. First, it implies that ‘degrees of truth’ for
compound statements cannot be interpreted epistemically while upholding
truth functionality. Indeed, most fuzzy logicians correctly emphasize that
the concept of degrees of truth is orthogonal to the concept of degrees of
belief. While truth functions for degrees of truth can be motivated and
justified in various ways — below we will review a game based approach
— degrees of belief simply don’t propagate compositionally and call for
other types of logical models (e.g., ‘possible worlds’). Second, concerning
the concept of intervals of degrees of truth, one should recognize that it is
incoherent to insist on both at the same time:

1. truth functions for all connectives, lifted from [0, 1] to Int[0,1], and

2. the interpretation of an interval [a, b] ⊆ [0, 1] assigned to a (compound)
proposition F as representing a situation where our best knowledge
about the (definite) degree of truth d ∈ [0, 1] of F is that a ≤ d ≤ b.

Given the mathematical elegance of 1, that results, among other desirable
properties, in a low computational complexity of the involved logics,4 one
should look for alternatives to 2. Godo and Esteva5 have pointed out that,
if we insist on 2 just for atomic propositions, then at least we can assert
that the corresponding ‘real’, but unknown truth degree of any composite
proposition F cannot lie outside the interval assigned to F according to
the truth functions considered in (Esteva et al., 1994) (described above).
However, these bounds are not optimal, in general. As we will see in Sec-
tion 5, taking clues from Giles’s game based semantic for L (Giles, 1974),
(Giles, 1977), a tighter characterization emerges if we dismiss the idea that
intervals represent sets of unknown, but definite truth degrees.

4 It is easy to see that coNP-completeness of testing validity for L (and many other t-norm
based logics) carries over to the interval based logics described above.
5Private communication.
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3 Revisiting Giles’s game for L

Giles’s analysis (Giles, 1974), (Giles, 1977) of approximate reasoning origi-
nally referred to the phenomenon of ‘dispersion’ in the context of physical
theories. Later (Giles, 1976) explicitly applied the same concept to the prob-
lem of providing ‘tangible meanings’ to (composite) fuzzy propositions.6 For
this purpose he introduces a game that consists of two independent compo-
nents:

Betting for positive results of experiments.

Two players — say: me and you — agree to pay 1€ to the opponent player
for every false statement they assert. By [p1, . . . , pm‖q1, . . . , qn] we denote
an elementary state of the game, where I assert each of the qi in the multiset
{q1, . . . , qn} of atomic statements (represented by propositional variables),
and you assert each atomic statement pi ∈ {p1, . . . , pm}.
Each propositional variable q refers to an experiment Eq with binary

(yes/no) result. The statement q can be read as ‘Eq yields a positive result’.
Things get interesting as the experiments may show dispersion; i.e., the same
experiment may yield different results when repeated. However, the results
are not completely arbitrary: for every run of the game, a fixed risk value
〈q〉r ∈ [0, 1] is associated with q, denoting the probability that Eq yields a
negative result. For the special atomic formula ⊥ (falsum) we define 〈⊥〉r =
1. The risk associated with a multiset {p1, . . . , pm} of atomic formulas
is defined as 〈p1, . . . , pm〉r =

m∑

i=1
〈pi〉r. It specifies the expected amount of

money (in €) that has to be paid according to the above agreement. The
risk 〈〉r associated with the empty multiset is 0. The risk associated with
an elementary state [p1, . . . , pm‖q1, . . . , qn] is calculated from my point of
view. Therefore the condition 〈p1, . . . , pm〉r ≥ 〈q1, . . . , qn〉r expresses that
I do not expect (in the probability theoretic sense) any loss (but possibly
some gain) when we bet on the truth of the involved atomic statements as
stipulated above.

6E.g., Giles suggests to specify the semantics of the fuzzy predicate ’breakable’ by as-
signing an experiment like ’dropping the relevant object from a certain height to see if it
breaks’. The expected dispersiveness of such an experiment represent the ’fuzziness’ of
the corresponding predicate. An arguably even better example of a dispersive experiment
in the intended context might consist in asking an arbitrarily chosen competent speaker
for a yes/no answer to questions like ’Is Chris tall?’ or ‘Is Shakira famous?’ for which
truth may cogently be taken as a matter of degree.



Truth Value Intervals 57

A dialogue game for the reduction of composite formulas.

Giles follows ideas of Paul Lorenzen that date back already to the 1950s (see,
e.g., (Lorenzen, 1960)) and constrains the meaning of logical connectives
by reference to rules of a dialogue game that proceeds by systematically
reducing arguments about composite formulas to arguments about their
subformulas.
The dialogue rule for implication can be stated as follows:

R→ If I assert A → B then, whenever you choose to attack this statement
by asserting A, I have to assert also B. (And vice versa, i.e., for the
roles of me and you switched.)

This rule reflects the idea that the meaning of implication is specified by
the principle that an assertion of ‘if A, then B’ (A → B) obliges one to
assert B, if A is granted.7

In the following we only state the rules for ‘me’; the rules for ‘you’ are
perfectly symmetric. For disjunction we stipulate:

R∨ If I assert A1 ∨ A2 then I have to assert also Ai for some i ∈ {1, 2}
that I myself may choose.

The rule for (weak) conjunction is dual:

R∧ If I assert A1 ∧A2 then I have to assert also Ai for any i ∈ {1, 2} that
you may choose.

One might ask whether asserting a conjunction shouldn’t oblige one to assert
both disjuncts. Indeed, for strong conjunction8 we have

R& If I assert A1&A2 then I have to assert either both A1 and A2, or
just ⊥.

The possibility of asserting ⊥ instead of the attacked conjunction reflects
Giles’s ‘principle of hedged loss’: one never has to risk more than 1€ for
each assertion. Asserting ⊥ is equivalent to (certainly) paying 1€.
In contrast to dialogue games for intuitionistic logic (Lorenzen, 1960),

(Felscher, 1985) or fragments of linear logic, no special regulation on the
succession of moves in a dialogue is required here. Moreover, we assume
that each assertion is attacked at most once: this is reflected by the removal
of the occurrence of the formula F from the multiset of formulas asserted
by a player, as soon as it has been attacked, or whenever the other player
has indicated that she will not attack this occurrence of F during the whole

7Note that, since ¬F is defined as F → ⊥, according to R→ and the above definition of
risk, the risk involved in asserting ¬p is 1 − 〈p〉r.
8Giles did not consider strong conjunction. The rule is from (Fermüller & Kosik, 2006).
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run of the dialogue game. Every run thus ends in finitely many steps in
an elementary state [p1, . . . , pm‖q1, . . . , qn]. Given an assignment 〈·〉r of
risk values to all pi and qi we say that I win the corresponding run of the
game if I do not have to expect any loss in average, i.e., if 〈p1, . . . , pm〉r ≥
〈q1, . . . , qn〉r.
As an almost trivial example consider the game where I initially assert

p → q for some atomic formulas p and q; i.e., the initial state is [‖p → q]. In
response, you can either assert p in order to force me to assert q, or explicitly
refuse to attack p → q. In the first case, the game ends in the elementary
state [p‖q]; in the second case it ends in state [‖]. If an assignment 〈·〉r of
risk values gives 〈p〉r ≥ 〈q〉r, then I win, whatever move you choose to make.
In other words: I have a winning strategy for p → q in all assignments of
risk values where 〈p〉r ≥ 〈q〉r.
Note that winning, as defined here, does not guarantee that I do not

loose money. I have a winning strategy for p → p, resulting either in state
[‖] or in state [p‖p] depending on your (the opponents) choice. In the second
case, although the winning condition is clearly satisfied, I will actually loose
1€, if the execution of the experiment Ep associated with your assertion
of p happens to yield a positive result, but the execution of the same ex-
periment associated with my assertion of p yields a negative result. It is
only guaranteed that my expected loss is non-positive. (‘Expectation’, here,
refers to standard probability theory. Under a frequentist interpretation
of probability we may think of it as average loss, resulting from unlimited
repetitions of the corresponding experiments.)
To state Giles’s main result, recall that a valuation v for Łukasiewicz

logic L is a function assigning values ∈ [0, 1] to the propositional variables
and 0 to ⊥, extended to composite formulas using the truth functions ∗L,
max, min, and ⇒L, for strong and weak conjunction, disjunction and im-
plication, respectively.

Theorem 1 ((Giles, 1974), (Fermüller & Kosik, 2006)). Each assignment
〈·〉r of risk values to atomic formulas occurring in a formula F induces a
valuation v for L such that v(F ) = x if and only if my optimal strategy
for F results in an expected loss of (1− x)€.

Corollary 1. F is valid in L if and only if for all assignments of risk values
to atomic formulas occurring in F I have a winning strategy for F .

4 Playing under partial knowledge

It is important to realize that Giles’s game model for reasoning about vague
(i.e., here, unstable) propositions implies that each occurrence of the same
atomic proposition in a composite statement may be evaluated differently
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at the level of results of associated executions of binary experiments. This
feature induces truth functionality: the value for p∨¬p is not the probability
that experiment Ep either yields a positive or a negative result, which is 1
by definition; it rather is 1−x, where x = min(〈p〉r, 1−〈p〉r) is my expected
loss (in €) after having decided to bet either for a positive or for a negative
result of an execution of Ep (whatever carries less risk for me).
The players only know the individual success probabilities9 of the relevant

experiments. Alternatively, one may disregard individual results of binary
experiments altogether and simply identify the assigned probabilities with
‘degrees of truth’. In this variant the ‘pay-off’ just corresponds to these
truth values, and Giles’s game turns into a kind of Hintikka style evaluation
game for L.
How does all this bear on the mentioned problems of interpretation for

interval based fuzzy logics? Remember that both, (Esteva et al., 1994) and
(Cornelis et al., 2007, 2006, 2004) seem to suggest that an interval of truth
values [a, b] represents ‘imprecise knowledge’ about the ‘real truth value’ c,
in the sense that only c ∈ [a, b] is known. For the betting and dialogue
game semantic this suggests that the players (or at least player ‘I’) now
have to choose their moves in light of corresponding ‘imprecise’ (partial)
knowledge about the success probabilities of the associated experiments.
However, while this may result in an interesting variant of the Giles’s game,
its relation to the truth functional semantics suggested for logics based on
Int[0,1] and L-connectives is dubious.
The following simple example illustrates this issue. Suppose the interval

v∗(p) = [v∗1(p), v
∗
2(p)] assigned to the propositional variable p is [0, 1], re-

flecting that we have no knowledge at all about the ‘real truth value’ of the
proposition represented by p. According to the truth functions presented
in Section 1, the formula p ∨ ¬p evaluates also to [0, 1], since v∗(¬p) = [1−
v∗2(p), 1−v∗1(p)] = [0, 1] and hence v(p∨¬p) = [max(0, 0),max(1, 1)] = [0, 1].
Sticking with the ‘imprecise knowledge’ interpretation, the resulting interval
should reflect my knowledge about my expected loss if I play according to
an optimal strategy. However, while 1− v∗2(p ∨ ¬p) = 0 is the correct lower
bound on my expected loss after performing the relevant instance of Ep, to
require that 1 − v∗1(p ∨ ¬p) = 1 is the best upper bound for the loss that
I have to expect when playing the game is problematic. When playing a
mixed strategy that results in my assertion of either p or of ¬p with equal
probability, then my resulting expected loss is 0.5€, not 1€.
We introduce some notation to assist precise statements about the rela-

tion between the interval based semantics of (Esteva et al., 1994) and Giles’s

9These might well be purely subjective probabilities that may differ for the two players.
To prove Theorem 1 one only has to assume that I can act on assigned probabilities that
determine ‘my expectation’ of loss.
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game. Let v∗ be an interval assignment, i.e. an assignment of closed intervals
⊆ [0, 1] to the propositional variables PV. Then v∗

L
denotes the extension of

v∗ from PV to arbitrary formulas via the truth functions ⇒∗
E for implica-

tion and the point-wise generalizations of max, min, and ∗L for disjunction,
weak conjunction, and strong conjunction, respectively. Call any assign-
ment v of reals ∈ [0, 1] compatible with v∗ if v(p) ∈ v∗(p) for all p ∈ PV.
The corresponding risk value assignment 〈·〉rv , defined by 〈p〉rv = 1− v(p), is
also called compatible with v∗.

Proposition 1. If, given an interval assignment v∗, the formula F evalu-
ates to v∗

L
(F ) = [a, b] then the following holds:

∗ For the game in Section 3, played on F : All (pure) strategies for me
that are optimal with respect to some fixed risk value assignment 〈·〉rv
compatible with v∗ result in an expected loss of at most (1 − a)€, but
at least (1− b)€.

Note that in the above statement my expected loss refers to a risk value
assignment 〈·〉rv that is fixed before the dialogue game begins. I will play
optimally with respect to this assignment. Since the corresponding expected
pay-off is all that matters here, we technically still have a game of perfect
information and therefore no generality is lost by restricting attention to
pure strategies. The bounds given by v∗

L
for my expected loss are not

optimal in general. In other words, the inverse direction of Proposition 1
does not hold. To see this, consider again the interval assignment v∗(p) =
[0, 1] resulting in v∗

L
(p ∨ ¬p) = [0, 1]. Obviously, I cannot loose more than

1€, even if I play badly, but my expected loss under any fixed risk value
assignment 〈·〉rv is never greater than 0.5€ if I play optimally with respect
to 〈·〉rv .
On the other hand, sticking with our example ‘p ∨ ¬p’, one can observe

that the best upper bound for my loss is indeed 1€ if I do not know the rele-
vant risk values and I still have to stick with some pure strategy. This is be-
cause the chosen strategy might suggest to assert p even if, unknown to me,
the experiment Ep always has a negative result. In other words, the bounds 1
and 0 are optimal now and coincide with the limits of v∗

L
(p∨¬p). However,

in general, this scenario — playing a pure strategy referring to risk values
that need not coincide with the risk values used to calculate the expected
pay-off — may lead to an expected loss outside the interval corresponding
to v∗

L
. For a simple example consider p∨ q, where v∗(p) = [0.4, 0.4], i.e., the

players know that the expected loss associated with an assertion of p is 0.6€,
and v∗(q) = [0, 1], i.e., the risk associated with asserting q can be any value
between 1 and 0. We have v∗

L
(p ∨ q) = [max(0, 0.4),max(0.4, 1)] = [0.4, 1].

Under the assumption that 〈q〉rv = 0, which is compatible with v∗(q), my
best strategy calls for asserting q in consequence of asserting p ∨ q. But
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if the state [‖q] is evaluated using the risk value 〈q〉rv = 1, which is also
compatible with v∗(q), then I have to expect a sure loss of 1€, although
1− 1 = 0 is outside [0.4, 1].

5 Cautious and bold betting on unstable propositions

We suggest that a more convincing justification of the formal semantics
of (Esteva et al., 1994) arises from the following alternative game based
model of reasoning under imprecise knowledge. Like above, let v∗ be an as-
signment of intervals ⊆ [0, 1] to the propositional variables. Again, we leave
the dialogue part of Giles’s game unchanged. But in reference to the partial
information represented by v∗, we assign two different success probabilities
to each experiment Eq corresponding to a propositional variable q, reflecting
whether q is asserted by me or by you and consider best case and worst case
scenarios (from my point of view) concerning the resulting expected pay-off.
More precisely, my expected loss for the final state [p1, . . . , pm‖q1, . . . , qn]

when evaluated v∗-cautiously is given by
n∑

i=1
〈qi〉rh−

m∑

i=1
〈pi〉rl , but when eval-

uated v∗-boldly it is given by
n∑

i=1
〈qi〉rl −

m∑

i=1
〈pi〉rh, where the risk values 〈q〉rh

and 〈q〉rl are determined by the limits of the interval v∗(q) = [a, b] as follows:
〈q〉rh = 1− a and 〈q〉rl = 1− b.

Proposition 2. Given an interval assignment v∗, the following statements
are equivalent:

(i) Formula F evaluates to v∗
L
(F ) = [a, b].

(ii) For the dialogue game in Section 3, played of F : if elementary states
are evaluated v∗-cautiously then the minimal expected loss I can achie-
ve by an optimal strategy is (1−b)€; if elementary states are evaluated
v∗-boldly then my optimal expected loss is (1− a)€.

6 Conclusion

We have been motivated by various problems that arise from insisting on
truth functionality for a particular type of fuzzy logic intended to capture
reasoning under ‘imprecise knowledge’. Most importantly for the current
purpose, we have employed a dialogue cum betting game approach to model
logical inference in a context of ‘dispersive experiments’ for testing the truth
of atomic assertions. This analysis not only leads to different characteriza-
tions of an important interval based fuzzy logic, but relates concerns about
properties of fuzzy logics to reflections on rationality qua playing optimally
in adequate games for ‘approximate reasoning’.
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Łukasiewicz, J. (1920). O logice tròjwartościowej. Ruch Filozoficzny, 5 , 169–171.

Shapiro, S. (2006). Vagueness in context. Oxford: Oxford University Press.

Zadeh, L. A. (1975). Fuzzy logic and approximate reasoning. Synthese, 30 (3–4),
407–428.

Zadeh, L. A. (1988). Fuzzy logic. IEEE: Computer , 21 (4), 83–93.





Procedural Semantics for Mathematical Constants

Bjørn Jespersen Marie Duž́ı∗

1 Introduction

Consider numerical constants like ‘1’ and ‘π’. What is their semantics? We
are going to argue in favour of a realist procedural semantics, according to
which sense and denotation are correlated as procedure and product. So it
is obvious that our procedural semantics bears similarities to Moschovakis’s
as based on algorithm and value. We are in opposition to Kripke’s unre-
alistic realist contention that the semantics of ‘π’ consists in nothing other
than ‘π’ rigidly denoting π. Yes, ‘π’ does denote π — indeed, ‘π’ qualifies
as a strongly rigid designator of π, cf. (Kripke, 1980, p. 48) — but there
is substantially more to the semantics of ‘π’ than merely the denotation
relation. In this paper we focus on ‘π’, since our general top-down strategy
is to develop a semantics for the hardest (or a very hard) case and then
generalise downwards to increasingly less hard cases from there.
In outline, our procedural semantics says that ‘π’ expresses as its sense a

procedure whose product is π. The procedure is, as a matter of mathemat-
ical convention, a definition of π and the product is, as a matter of math-
ematical fact, the (transcendental) number so defined. For comparison, ‘1’
expresses as its sense the procedure consisting in applying the successor
function to zero once and denotes whatever (natural) number emerges as
the product of this procedure.
The upside of a procedural semantics for ‘π’ is that to understand, as a

reader or hearer, and exercise linguistic competence, as a writer or speaker,
one must merely understand a particular numerical definition and need not
know which number it defines. Procedural semantics, whether realist or ide-
alist, construes sense as an itinerario mentis abstracting from the itinerary’s
destination. Making the denotation of a numerical constant irrelevant to

∗This work is supported by Grant No. 401/07/0451, Semantisation of Pragmatics, of the
Grant Agency of the Czech Republic.
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understanding and linguistic competence is not pressing in the case of ‘1’,
but it is so in the case of ‘π’. The downside, however, is that at least two
equivalent, but obviously distinct, definitions of π are vying for the role as
the sense of ‘π’. One is the ratio of a circle’s area and its radius squared ; the
other is the ratio of a circle’s circumference to its diameter. They are equiv-
alent, because the same number is harpooned by both definitions. But the
procedures are conceptually different, so they should not both be assigned
to ‘π’ as its sense on pain of installing homonymy. This kind of predicament
has become historically famous. Says Frege,

Solange nur die Bedeutung dieselbe bleibt, lassen sich diese Schwan-
kungen des Sinnes ertragen, wiewohl auch sie in dem Lehrgebäude
einer beweisenden Wissenschaft zu vermeiden sind und in einer vol-
lkommenen Sprache nicht vorkommen dürften. (Frege, 1892, n. 2,
p. 42)

We shall suggest a solution to this predicament. The crust of the solution
is to relegate each definition of π to individual conceptual systems. Since
an interpreted sign such as ‘π’ is a pair whose elements are a character (in
this case the Greek letter ‘π’) and a sense, there will be as many such pairs
as there are conceptual systems defining π. Disambiguation of ‘π’-involving
discourse will consist in making explicit which particular π-defining system
should supply the sense of a token of the character ‘π’.
A related predicament, which we shall also address, is whether ‘π’ is best

construed as a name for π or as a shorthand for a definite description. If a
name, the sense of ‘π’ will, in our semantics, be a primitive procedure con-
sisting in the instruction to obtain, or access, π in one step. The procedure
will not tell us how to obtain π, but only that π is to be obtained. This
does not sit well with π being something as complicated as a transcendental
number. But it does sit well with ‘π’ being itself a primitive, or simple,
character not disclosing any information about its denotation. So at least
on a literal analysis, according to which syntactic and semantic structures
are by and large isomorphic, ‘π’ should be paired off with a non-compound
sense. If ‘π’ is a definite description (in disguise), the sense of ‘π’ will, in our
semantics, be a compound procedure consisting in the instruction to ma-
nipulate various mathematical operations and concepts in order to define a
number. Only the problem, as we just pointed out, is, which procedure?
Is it the instruction to calculate the ratio of a circle’s area and its radius
squared, or is it the instruction to calculate the ratio of a circle’s circum-
ference and its diameter, or is it some yet other instruction? Whichever it
may be, though, the grammatical constant ‘π’ will be synonymous with the
definite description ‘the ratio. . . ’ chosen. The problem of homonymy does
not rear its head in case the sense of ‘π’ is a primitive procedure, for then
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‘π’ is only equivalent (co-denoting) with a particular definition. In fact,
since all the variants of definitions co-denote the same number, ‘π’ will be
equivalent with all such descriptions.
Our underlying semantic schema is depicted in the following figure.

procedure
(sense)

denoted entity
(if any)

constant

ex
pr
es
se
s

produces

denotes
(nam
es)

Semantic schema

The relation a priori of expressing as obtaining between constant and sense
exhausts the pure semantics of the constant. As soon as a procedure is
explicitly given, its product (if any) is implicitly given, for the relation from
procedure to product is an internal one: a procedure can have at most
one product, and that product is invariant. The procedure will produce its
product independently of any algorithm; this is why the relation between
procedure and product is an internal one. But for epistemological reasons
we will need some way or other of calculating its product to learn what it
is, so we need a π-calculating algorithm to show us what number satisfies
whatever π-defining condition. Such an algorithm will, ipso facto, reveal to
us what the denotation of ‘π’ is. The number 3.14159 . . . which is π is itself
no player in the pure semantics of ‘π’. π is just whatever number rolls out
as the value of the given procedure. The number 3.14159 . . . is itself of little
mathematical interest and of no semantic import. The properties of π, by
contrast, are of great interest; e.g., whether π is normal in some base; and
establishing that π is transcendental (and not just rational) was a major
mathematical achievement.
An algorithm may appear in one of two capacities. Either it is an in-

termediary between the definition and the number so defined: then the
algorithm (whichever it is) is no player in the pure semantics of ‘π’. Or
an algorithm is the very sense of ‘π’: then the algorithm is a player in the
pure semantics of ‘π’. Our procedural semantics allows that a π-calculating
algorithm may itself be elevated to playing the role of sense of ‘π’. In such a
case ‘π’ will have as its sense one particular way of calculating π. An algo-
rithm is a particular kind of procedure and can as such figure as a linguistic
sense relative to a procedural semantics.
In the former case, if the definition is a condition then the algorithm

will calculate the satisfier of the condition. Full competence with respect to
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the definition the ratio. . . will yield knowledge of a condition to be satisfied
by a real number, but will not yield knowledge of which number satisfies
it. So the definition is, strictly speaking, a definition of something for a
number to be; namely, the ratio of two geometric proportions. If the sense
defines π as the ratio between the area of a circle and its radius squared,
a matching algorithm must calculate this ratio. Full linguistic competence
with respect to ‘π’ neither presupposes, nor need involve, knowledge of
how to calculate π. What competence consists in depends on whether the
sense of ‘π’ is a primitive or compound procedure. If primitive, competence
requires knowing which transcendental real 3.14159 . . . is π. If compound,
competence requires understanding the concept the ratio of, as well as either
the concepts the area of, the radius of, the square of, or the concepts the
circumference of and the diameter of, together with knowledge of how to
mathematically manipulate them. A school child will understand such a
complex procedure; it takes a professional mathematician to develop and
comprehend a π-calculating algorithm. The task facing the mathematician
is to come up with an algorithm equivalent with the definition defining the
given ratio.
In the latter case, where an algorithm is the sense of ‘π’, full linguis-

tic competence with respect to ‘π’ is to understand a definition of π and,
again, not of the number so defined. But since the algorithm is now not an
intermediary between definition and number, linguistic competence will be
harder to come by, since the sense of ‘π’ is now likely to involve much more
complicated mathematical notions than just, say, those of ratio, area, and
circumference, such as the limit of an infinite series.

2 Beyond Benacerraf

Assume that the truth-condition of “. . .π. . . ” requires π to exist as an in-
dependent, abstract entity. Assume, further, that we can have no epistemic
access to entities that we can have no causal interaction with. Then next
stop is Benacerraf’s dilemma as formulated for π: we do not know what
number is π; yet we want to dub π ‘π’ in order to talk about π in “. . .π. . . ”.
So how is ‘π’ to be introduced into mathematese? Moreover, now that ‘π’
has actually been introduced into standard mathematical vocabulary and
been in use for three hundred years, what would a realist (as opposed to
constructivist or otherwise idealist) construal of its semantics look like?
We propose placing our procedural semantics within the general Fregean

programme of explicating sense (Sinn) as the mode of presentation (Art des
Gegebenseins) of the entity (Bedeutung) that a sense determines. Muskens
correctly points out that “The idea was provided with extensive philosoph-
ical justification in Tichý [(1988)]” and that “[Tichý’s] notion of senses as
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constructions essentially captures the same idea.” (Tichý, 2004, p. 474)
Going with this Fregean programme, however, raises a batch of questions
deserving and demanding to be answered. Just how finely are senses sliced?
What is the ontological status of a sense? What does a sense ‘look like’; in
particular, what is its structure? And how does a sense determine some-
thing?
We agree with Moschovakis’ conception of sense (‘referential intension’,

in his vernacular) as ‘an (abstract, idealized, not necessarily implementable)
algorithm which computes the denotation of [a term]’ (Moschovakis, 2006,
p. 27); see also (Moschovakis, 1994).1

Moschovakis outlines his conception thus:

The starting point. . . [is] the insight that a correct understanding
of programming languages should explain the relation between a pro-
gram and the algorithm it expresses, so that the basic interpretation
scheme for a programming language is of the form

program P → algorithm(P ) → den(P ).

It is not hard to work out the mathematical theory of a suitably
abstract notion of algorithm which makes this work; and once this
is done, then it is hard to miss the similarity with the basic Fregean
scheme for the interpretation of a natural language,

term A → meaning(A) → den(A).

This suggested at least a formal analogy between algorithms and
meanings which seemed worth investigating, and proved after some
work to be more than formal: when we view natural language with a
programmer’s eye, it seems almost obvious that we can represent the
meaning of a term A by the algorithm which is expressed by A and
which computes its denotation. (Moschovakis, 2006, p. 42)

In modern jargon, TIL belongs to the paradigm of structured meaning.
However, Tichý does not reduce structure to set-theoretic sequences, as

1Moschovakis’ notion of algorithm borders on being too permissive, since algorithms are
normally understood to be effective. (See (Cleland, 2002) for discussion.) Tichý separates
algorithms from constructions: “The notion of construction is. . . correlative not with the
notion of algorithm itself but with what is known as a particular algorithmic computation,
the sequence of steps prescribed by the algorithm when it is applied to a particular input.
But not every construction is an algorithmic computation. An algorithmic computation
is a sequence of effective steps, steps which consist in subjecting a manageable object. . .
to a feasible operation. A construction, on the other hand, may involve steps which are
not of this sort.” (Moschovakis, 1994, p. 526), (Moschovakis, 2006, p. 613)
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do Kaplan and Cresswell.2 Nor does Tichý fail to explain how the sense
of a molecular term is determined by the senses of its atoms and their
syntactic arrangement (as Moschovakis objects to ‘structural’ approaches
in (Moschovakis, 2006, p. 27)).
In general, a procedure is a structure encompassing one or more steps

that individually detail how to determine a product and jointly detail how
to determine the product of the procedure that they are sub-procedures of.
(This holds even for one-step procedures.) Structures are needed as molecu-
lar units in which to organise atomic sub-procedures in a particular order. A
compound structure constitutes a hierarchy of sub-procedures. The philo-
sophical idea informing our procedural semantics is that since senses are
procedures, any two senses are identical just when they are, roughly speak-
ing, procedurally indistinguishable. (We shall individuate senses in terms
of procedural isomorphism; see below.) Intuitively, any two procedures are
identical just when they are instructions to do the same to the same things
in the same order.

3 Logical foundations

TIL constructions are procedures. Constructions divide into atomic and
compound, according as they encompass one or more steps. The atomic
ones are Variable and Trivialization; the compound ones, Composition and
Closure.3 A variable x constructs an object relative to a valuation function
pairing variables and entities off, such that x constructs the value assigned
to it. The Trivialization 0X constructs the entity X (which may be whatever
sort of entity found in the ontology of TIL). A Composition is the procedure
of applying a function at one of its arguments to obtain the value (if any)
at that argument; the functional value is the product of that procedure. A
Closure is the procedure of arranging objects x1, . . . , xn and y as functional
arguments and values, respectively; the resulting function is the product of
that procedure. If the sense of ‘π’ is simple, its sense is the Trivialization
of π: 0π. If complex, it is a Composition. In either case the product of the
respective procedure is the same transcendental number.

2Kaplan may well have been the one to reintroduce the notion of structured meaning
into mainstream analytic philosophy of language. See (Kaplan, 1978), written in 1970;
but see also (Lewis, 1972). (Cresswell, 1985) has become the standard point of reference.
All three agree that structure, especially a structured proposition, is (or can be modelled
as) an ordered n-tuple. This won’t do, though, since sequences underdetermine structure
and so cannot solve Russell’s old problem of propositional unity.
3And four others — Execution, Double Execution, Tuple, Projection — that we do not
need here.
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Here follows an outline of the logical backbone of our procedural seman-
tics for ‘π’. TIL constructions, as well as the entities they construct, all
receive a logical (as opposed to linguistic) type.
Definition 1 (Type of order 1).
Let B be a base, where a base is a collection of pair-wise disjoint, non-empty
sets. Then:

(i) Every member of B is an elementary type of order 1 over B.

(ii) Let α, β1, . . . , βm (m > 0) be types of order 1 over B. Then the
collection (αβ1 . . . βm) of allm-ary partial mappings from β1×· · ·×βm

into α is a functional type of order 1 over B.

(iii) Nothing is a type of order 1 over B unless it so follows from 1 and 2.

Definition 2 (Construction).

(i) The Variable x is a construction that constructs an object O of the
respective type dependently on a valuation v; it v-constructs O.

(ii) Trivialization: Where X is an object whatsoever (an extension, an
intension or a construction), 0X is the construction Trivialization. It
constructs X without any change.

(iii) The Composition [XY1 . . . Ym] is the following construction.
If X v-constructs a function f of a type (αβ1 . . . βm), and Y1 . . . Ym

v-construct entities B1, . . . , Bm of types β1, . . . , βm, respectively, then
the Composition [XY1 . . . Ym] v-constructs the value (an entity, if any,
of type α) of f on the tuple-argument 〈B1, . . . , Bm〉. Otherwise the
Composition [XY1 . . . Ym] does not v-construct anything and so is v-
improper.

(iv) The Closure [λx1 . . . xmY ] is the following construction.
Let x1, x2, . . . , xm be pairwise distinct variables v-constructing enti-
ties of types β1, . . . , βm and Y a construction v-constructing an α-
entity. Then [λx1 . . . xmY ] is the construction λ-Closure (or Closure).
It v-constructs the following function f of type (αβ1 . . . βm). Let
v(B1/x1, . . . , Bm/xm) be a valuation identical with v at least up to
assigning objects B1, . . . , Bm of types β1, . . . , βm, respectively, to vari-
ables x1, . . . , xm. If Y is v(B1/x1, . . . , Bm/xm)-improper (see (iii)),
then f is undefined on 〈B1, . . . , Bm〉. Otherwise the value of f on
〈B1, . . . , Bm〉 is the entity of type α v(B1/x1, . . . , Bm/xm)-constructed
by Y .

(v) Nothing is a construction, unless it so follows from (i) through (iv).
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Definition 3 (Ramified hierarchy of types).
Let B be a base. Then:
T1 (types of order 1): defined by Definition 1.
Cn (constructions of order n)

(i) Let x be a variable ranging over a type of order n. Then x is a
construction of order n over B.

(ii) Let X be a member of a type of order n. Then 0X, 1X, 2X are
constructions of order n over B.

(iii) Let X,X1, . . . ,Xm (m > 0) be constructions of order n over B. Then
[XX1 . . . Xm] is a construction of order n over B.

(iv) Let x1, . . . , xm,X (m > 0) be constructions of order n over B. Then
[λx1 . . . xmX] is a construction of order n over B.

(v) Nothing is a construction of order n over B unless it so follows from
Cn (i)–(iv).

Tn+1 (types of order n+ 1)
Let ∗n be the collection of all constructions of order n over B.

(i) ∗n and every type of order n are types of order n+ 1.

(ii) If 0 < m and α, β1, . . . , βm are types of order n + 1 over B, then
(αβ1 . . . βm) (see T1 2) is a type of order n+ 1 over B.

(iii) Nothing is a type of order n + 1 over B unless it so follows from (i)
and (ii).

The ontological status of a construction is an objective, abstract, struc-
tured procedure residing in a Platonic realm. Constructions are not inher-
ently linguistic senses, for they exist prior to and independently of language.
But they may be made, via linguistic convention, to serve as linguistic
senses. That is, in true realist fashion, TIL considers language a code.4

Programmatically stated, our semantics for ‘π’ complements the ontology
for π put forward in (Brown, 1990).
A construction determines what it constructs by constructing it. So the

logic of determination consists in the constructional descent from a proce-
dure to its product, as specified for each particular kind of construction
in Definition 2. Constructions are too finely individuated to figure as lin-
guistic senses, since some of the procedural differences they embody are
logically insignificant and are not encoded linguistically. Most obviously,

4 See (Tichý, 1988, pp. 228ff.).
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two α-equivalent constructions like λx[0> x00] and λy[0> y00] are just that
— two constructions of the class of positive numbers and not one; yet the
difference between the λ-bound variables x and y is procedurally irrelevant.
The solution to the granularity problem consists in forming equivalence
classes of procedurally isomorphic constructions and privileging a member
of each such class as the procedural sense of a given unambiguous term or
expression. Technically, the quest is for a suitable degree of extensionality
in the λ-calculus. Needless to say, it remains an open research question
exactly what the desirable calibration of linguistic senses should be, but our
current thesis is that procedures, and hence senses, should be identified up
to α- and η-equivalence.5

4 Kripke’s ‘π’ and ours

Central to Kripke’s denotational semantics is the distinction between fixing
the reference and giving the meaning/a synonym.6 One of Kripke’s illustra-
tions is this:

[‘π’] is not being used as short for the phrase ‘the ratio of the circum-
ference of a circle to its diameter’ [. . . ] It is used as a name for a real
number, which in this case is necessarily the ratio of the circumference
of a circle to its diameter. (Kripke, 1980, p. 60)

Kripke’s semantics for ‘π’ is simple (simplistic, as it turns out):

‘π’ π
rigidly designates

The description ‘the ratio. . . ’ serves to single out the unique ratio shared
by all circles, after which that number is baptised ‘π’. The description is
subsequently kicked off and so does not form part of the semantics proper
of Kripke’s ‘π’. This is problematic. Nobody knows of some one particular
real that it is π. So nobody knows of some one particular real that it is the
reference of ‘π’. So it is obscure what linguistic competence with respect to
‘π’ would consist in. Note that it is not an option to say that ‘π’ designates
whatever real is the ratio of a circle’s circumference to its diameter, for this
uniqueness condition forms no part of Kripke’s semantics for ‘π’.7 Kripke’s
introduction of ‘π’ is impeccable, and his ‘π’ does denote π. But we cannot

5 See (Duž́ı, Jespersen, & Materna, ms. 1, § 2.2) or (Jespersen, ms). For discussion of
Frege’s quest for the right calibration of Sinn, see (Sundholm, 1994) and (Penco, 2003).
6— a distinction anticipated at least by (Geach, 1969).
7The Kripkean can have recourse to some causal theory of reference in the case of words
for empirical entities like tigers, lemons and gold. But Benacerraf’s first horn blocks
this avenue. We surmise that Kripkean rigid designation cannot possibly be extended to
numerical constants and other terms denoting abstract entities.
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use his ‘π’ to denote π, nor can we understand anyone else’s use of ‘π’, since
we cannot know which particular transcendental number is π. In short,
Kripke’s ‘π’ has been severed radically from any humanly possible linguistic
practice, so it is inoperative.
In the idiom of procedural semantics, Kripke focuses entirely on the

product at the expense of the procedure. As a matter of mathematical fact,
3.14159 . . . is π, but why introduce a non-descriptive name when that name
severs the link between condition/procedure and satisfier/product? It seems
that on Kripke’s semantics it will be a discovery, and not a convention, that
π is the ratio of a circle’s circumference to its diameter. If so, it also seems
that Kripke’s ‘π’ misconstrues mathematical practice.
Some π-producing procedure must figure in the semantics of ‘π’; only

how? TIL faces a dilemma of its own, as we saw above. On the one hand, a
literal analysis of ‘π’ would dictate that the sense of ‘π’ be 0π, yielding the
schema

‘π’ 0π π
expresses constructs

The advantage of this construal is that what looks like a constant is a
constant (and not a definite description masquerading as one). However,
this is too close to Kripke’s ‘π’ for comfort. We would be reinstating the
problem that the semantics of ‘π’ pairs no mathematical condition off with
‘π’. To master ‘π’, 0π would suffice. The Trivialization merely instructs us
to construct π and not also how to construct it.
On the other hand, not least epistemic concerns dictate that the sense

of ‘π’ ought to be an ontological definition of π, yielding the schema

‘π’ [ιx[∀y[x = [0Ratio [. . . y . . . ][. . . y . . . ]]]]] π
expresses constructs

(By ‘ontological definition, we mean a compound construction (here, a Com-
position) that, in this case, constructs the number π, thereby laying down
what π is. An ontological definition contrasts with a linguistic definition,
which introduces a new term as synonymous with an existing term.) This
makes ‘π’ a shorthand term synonymous with ‘the ratio. . . ’, and its sense
is an ontological definition of π. The advantage of this construal is that it
pairs a mathematical condition off with ‘π’; but again, which? There is no
criterion to help decide which of the possible ontological definitions should
be the sense of ‘π’. It would be arbitrary to select one and assign it as sense;
but assigning them all introduces homonymy.
It would seem evident that a language-user needs to know at least one

definition of π in order to use and understand ‘π’. If we go with the
Trivialization-based analysis of ‘π’, the first step toward enhancing it is
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to make the logico-semantic fact that 0π is equivalent with [ιx[∀y[x =
[0Ratio [. . . y . . . ][. . . y . . . ]]]]] part of the semantics of ‘π’. 0π is indifferent
to how π is constructed by this or that compound construction, so as far as
the equivalence relation goes, any compound π-construction is as good as
any other. ‘π’ may be introduced as equivalent with

[ιx∀y[x = [0Ratio [0Area y][0Square [0Radius y]]]]] (1)

or
[ιx∀y[x = [0Ratio [0Circumference y][0Diameter y]]]], (2)

or any other compound π-constructing construction. Understanding is an-
other matter. One thing is to understand (1); another thing is to understand
(2). One may well know that ‘π’ is equivalent to this Composition without
knowing, ipso facto, that it is equivalent to that Composition.

5 Realistic realism?

Both causal theory of reference and denotational semantics are neither here
nor there as a theory of terms for abstract entities such as numbers. We
are putting forward a procedural semantics as a rival theory in order not
to get gored by Benacerraf’s horns or turning linguistic competence with
mathematical constants into an enigma. We suggest, in the final analysis,
that the semantics of ‘π’ ought to be that it is shorthand for, and there-
fore synonymous with, a definite description expressing a definition of π
and denoting the number so defined. But for each definitionn of π there
is going to be a pair 〈‘π’,definitionn(π)〉. So how do we handle the result-
ing homonymy? Schwankungen des Sinnes are neither here nor there in a
regimented language such as mathematese. Our solution revolves around
conceptual systems.
By ‘conceptual system’ we mean a set of constructions that is fully deter-

mined by the chosen set of simple concepts. Simple concepts are Trivialisa-
tions of nonconstructional entities of order 1. The compound concepts of a
conceptual system are then all the compound constructions that are formed
according to the rules of Definition 2 (plus perhaps involving additional
constructions) using simple concepts and variables. The exact definition of
conceptual system can be found in (Materna, 2004).
Relative to a particular conceptual system, a pair 〈‘π’,definitionn(π)〉 is

an unambiguous assignment of exactly one definition of π to ‘π’, provided
the conceptual system is independent, i.e., its set of simple concepts is
minimal. Consequently, ‘π’ is not ambiguous, for this character must always
be given together with a particular definition of π culled from a particular
conceptual system. The appearance of ambiguity arises only when two or
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more conceptual systems are invoked in the course of a discourse in which
tokens of ‘π’ occur.
The upshot of our solution is that there are several π-denoting constants

sharing the same first element, ‘π’. So when two mathematicians are both
deploying tokens of ‘π’, there is a risk of them talking at cross purposes,
until and unless they compare notes and, in case of invoking different con-
ceptual systems, come to agree on the same definition of π in the interest of
synonymy. Yet the mathematical results they may have π individually ob-
tained with respect to π are bound to be equivalent, for any two definitions
of π are bound to converge in the same number. After all, the problem was
always to do with Schwankungen des Sinnes and never Schwankungen der
Bedeutung.8
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Neighborhood Incompatibility Semantics for

Modal Logic

Kohei Kishida∗

This paper introduces neighborhood semantics for propositional modal logic
into the framework of Brandom’s (2008) incompatibility semantics. Neigh-
borhood semantics for modal logic, as it is conventionally studied, can be
considered to be a kind of possible-world semantics, in the sense that a
system of neighborhoods codifies a generalized accessibility relation among
points of the space, or worlds, at which the truth values of propositions are
evaluated. Such a semantics features the representational notions of truth
and possible world as its basic primitive constituents. Brandom’s incom-
patibility semantics, in contrast, is founded upon the inferential notions of
incoherence and incompatibility of sentences. The chief goal of this paper is
to show that this inferentialist framework of incompatibility semantics can
also adopt the notion of neighborhood to interpret modality, as the core idea
of neighborhood semantics works independently of the representational no-
tions.

1 Incompatibility Semantics: A Quick Review

Here we quickly review the basic definitions and facts in incompatibility
semantics that are relevant to this paper; see (Brandom, 2008) for a full
exposition of the semantics.
We write L both for a given sentential language and for the set of its

sentences. Let Inc be any subset of PL, the powerset of L, that is closed
upward in terms of ⊆, i.e., if X ∈ Inc and X ⊆ Y then Y ∈ Inc. We say
X is incoherent if X ∈ Inc; then Inc being ⊆-upward closed means that
adding more sentences to an incoherent set X of sentences never cures the
incoherence. We also say Y is incompatible with X if X ∪ Y ∈ Inc, and

∗The author would like to thank Alp Aker, Robert Brandom, Jaroslav Peregrin, José
Mart́ınez Fernández, and especially Nuel Belnap, for insightful comments and helpful
suggestions.
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write I(X) for the collection of Y ⊆ PL incompatible with X, i.e.

I(X) = {Y ⊆ L | X ∪ Y ∈ Inc}.

When p ∈ L, we write I(p) for I({p}).
The entailment relation, p � q, is defined by I(q) ⊆ I(p), i.e., that if X

is incompatible with q then it is incompatible with p. In general, X � Y ,
i.e., the conjunction of X entailing the disjunction of Y , is defined by

X � Y ⇐⇒
⋂

p∈Y

I(p) ⊆ I(X),

that is, anything that rules out all p ∈ Y rules out X. Applying this to the
case Y = ∅ in particular, with

⋂

p∈∅

I(p) = PL, we have the following, which
agrees with what is usually meant by X � ∅:

X � ∅ ⇐⇒ PL ⊆ I(X) ⇐⇒ X ∈ Inc .

When L has a negation operator ¬, we assume that I satisfies

X ∈ I(¬p) ⇐⇒ X � p for every p ∈ L;

i.e., ¬p is incompatible with all and only X that entail p. Then we have
I(¬¬p) = I(p), and hence X ∈ I(p) ⇐⇒ X � ¬p. Also, when L has a
disjunction operator ∨, I is assumed to satisfy I(p ∨ q) = I(p) ∩ I(q); i.e.,
X implies neither p nor q is the case if and only if it denies both p and q.1

A pair (L,I) of such L and I is called an incompatibility frame.

2 Neighborhood Semantics in the Possible-World Framework

To introduce neighborhood incompatibility semantics, it is helpful to first
review the neighborhood semantics as conventionally studied in the possible-
world framework and to then draw a formal analogy.
Let us recall that possible-world semantics interprets a modal language L

with a set W of possible worlds by assigning to each sentence p ∈ L a subset
JpK of W, sometimes called a proposition. Then that a world w ∈ W lies in
the interpretation JpK of p means p is true at w, and hence p semantically
entails q if and only if JpK ⊆ JqK. So, for example, the T axiom 2p ⊢ p ⊢ 3p
of modal logic corresponds to J2pK ⊆ JpK ⊆ J3pK. This suggests, from the
point of view of topology, that the 2 operator corresponds to a generalized
interior operation, while 3 corresponds to a generalized closure, defined on
a system of neighborhoods on W as follows.
1The official definition in (Brandom, 2008) first defines I(p ∧ q) = I({p, q}) and then
defines p ∨ q as ¬(¬p ∧ ¬q), which still entails I(p ∨ q) = I(p) ∩ I(q).
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Each world w, or point of the space W, is assigned a collection of subsets
of the space, called the neighborhoods of w; we write Nw for this collection.
Then, given A ⊆ X, a point w is in the interior (in the generalized sense)
of A if and only if it has a neighborhood U contained in A to witness
that w is “well inside” A. And w is in the closure of A if and only if all
of its neighborhoods intersect A, or in other words, if and only if w has
no neighborhood U disjoint from A to witness that w is “well outside” A.
Now, given an interpretation JpK ⊆ X of p, its interior and closure interpret
2p and 3p, respectively. More formally, we have the following (2pw) and
(3pw) (the subscript “pw” is just to connote “the possible-world case”):

2

w ∈ J2pK ⇐⇒ ∃U ∈ Nw · U ⊆ JpK, (2pw)

w ∈ J3pK ⇐⇒ ∀U ∈ Nw · U ∩ JpK 6= ∅. (3pw)

Let us note two things here. First, this neighborhood setting subsumes
Kripke semantics. That is because Kripke semantics is obtained from this
neighborhood semantics by further assuming that each world w has exactly
one neighborhood Rw, called the worlds “accessible from w”. Then (2pw)
and (3pw) boil down to the following conditions, which are clearly equivalent
to the usual truth conditions for 2p and 3p:

w ∈ J2pK ⇐⇒ Rw ⊆ JpK,

w ∈ J3pK ⇐⇒ Rw ∩ JpK 6= ∅.

Second, this neighborhood semantics has 2 and 3 dual to each other, i.e.,
3 is just ¬2¬, while 2 is just ¬3¬, because the condition J¬pK = W \ JpK
(i.e., that negation is interpreted by complement in W) implies
w ∈ J3pK ⇐⇒ ∀U ∈ Nw · U ∩ JpK 6= ∅ by (3pw)

⇐⇒ ¬∃U ∈ Nw · U ⊆ W \ JpK = J¬pK
⇐⇒ w /∈ J2¬pK by (2pw)

⇐⇒ w ∈ W \ J2¬pK = J¬2¬pK.
2This definition of interior and closure is less general than the standard version in neigh-
borhood semantics (see, e.g., (Chellas, 1980)). Indeed, the former is equivalent to the
latter with the assumption that all families of neighborhoods are ⊆-upward closed. The
reason I adopt the less general definition in this paper is a philosophical one that, when
imported to the incompatibility framework, it renders available to us the counterfactual-
robustness interpretation of neighborhoods, which we will see in Section 3. There is no
technical reason we could not adopt and import the standard, fully general formulation
to the incompatibility framework.
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3 Neighborhood Semantics in the Incompatibility Framework

To import the idea from the possible-world framework to the incompatibility
framework, let us compare the two frameworks at the ground (i.e. non-
modal) level.
First, while the possible-world semantics interprets sentences p with sub-

sets JpK of W containing worlds w, the incompatibility semantics interprets
them with subsets I(p) of PL containing sets X of sentences. This com-
parison suggests that we consider PL rather than W to be the space, and
X ∈ PL rather than w ∈ W to be points in this space.
Then recall that, because that a pointX of this space PL lies in a seman-

tic interpretant I(p) means incompatibility, entailment p � q corresponds to
the reverse inclusion I(p) ⊇ I(q) in the incompatibility framework, rather
than the inclusion JpK ⊆ JqK in the possible-world case. For example, the T
axiom 2p ⊢ p ⊢ 3p corresponds to I(3p) ⊆ I(p) ⊆ I(2p). This suggests
that, in the incompatibility framework, 3 should be interpreted by interior
rather than closure, and 2 by closure rather than interior.
Therefore, the neighborhood incompatibility semantics should simply re-

place W with PL, and switch 3 and 2 in the interpretation. This idea can
be put as follows. A neighborhood incompatibility frame is a triple (L,I,N )
consisting of:

• A (sentential) language L with modal operators;

• A map I such that (L,I) is an incompatibility frame on L, treating
the non-modal operators of L properly (in the manner reviewed in
Section 1);

• A neighborhood function N : PL → PPPL whose interior and closure
operations interpret 3 and 2, i.e., that satisfies the following:

X ∈ I(3p) ⇐⇒ ∃U ∈ NX · U ⊆ I(p), (3)

X ∈ I(2p) ⇐⇒ ∀U ∈ NX · U ∩ I(p) 6= ∅. (2)

We define � as before: (L,I,N ) has X � Y if and only if (L,I) has
⋂

p∈Y

I(p) ⊆ I(X).

As this definition is purely formal, we need to explain what, conceptually,
is going on here. First, fix a point X ∈ PL. Then X is a set of sentences,
e.g., p /∈ X, q ∈ X,. . . When U ⊆ PL is a neighborhood of X, namely
U ∈ NX , it contains other points Y , Z,. . . each of which is a set of sen-
tences, e.g., p ∈ Y , q /∈ Y ,. . . Then Y might be obtained by adding p to X,
dropping q from X, and so on, and similarly for Z. Hence we can consider
Y or Z to be modifying X with counterfactual hypotheses; for example,
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when we are at the information state X, Y is just X with the counterfac-
tual supposition “If p were known true, but q were unknown, and so on”.
Then each neighborhood U ⊆ PL of X is an “admissible” way of grouping
together such counterfactual hypotheses on X, where the “admissibility” is
formally expressed by U lying in NX .
Now, under this interpretation of neighborhoods U ∈ NX , U ⊆ I(p) (i.e.,

∀Y ∈ U [Y ∈ I(p)]) means “Whatever counterfactual hypothesis Y (within
the range of U) we may make on X, it would still be incompatible with
p”. In short, U ∈ NX such that U ⊆ I(p) witnesses the incompatibility
of X with p is counterfactually robust. Accordingly, (3) states that X
is incompatible with possibly-p if and only if some neighborhood U of X
witnesses the counterfactual robustness of X being incompatible with p. On
the other hand, U ∈ NX such that U ∩ I(p) = ∅ (i.e., ∀Y ∈ U [Y /∈ I(p)])
witnesses that the compatibility of X with p is counterfactually robust, and
hence (2) states that X is incompatible with necessarily-p if and only if the
counterfactual robustness of X being compatible with p is never witnessed.
Or, rewriting (2) in terms of entailment with X � ¬p ⇐⇒ X ∈ I(p), we
have

X � ¬2p ⇐⇒ X ∈ I(2p) ⇐⇒ ∀U ∈ NX · U ∩ I(p) 6= ∅

⇐⇒ ∀U ∈ NX∃Y ∈ U · Y ∈ I(p)
⇐⇒ ∀U ∈ NX∃Y ∈ U · Y � ¬p;

that is, X entails not-necessarily-p if and only if every neighborhood U of
X contains a counterfactual hypothesis Y that entails not-p.

4 Logic for Neighborhood Incompatibility Semantics

This section reviews what rules and axioms are valid or invalid in neighbor-
hood incompatibility semantics. By saying that an axiom (scheme) X ⊢ Y
is valid in a neighborhood incompatibility frame (L,I,N ), we mean that
(L,I,N ) has X � Y , i.e.

⋂

p∈Y

I(p) ⊆ I(X) (for all instances of the scheme).3

Also, by saying that a rule (scheme)

X0 ⊢ Y0

X1 ⊢ Y1

is valid in (L,I,N ), we mean that if (L,I,N ) has X0 � Y0 then it has
X1 � Y1 (for all instances of the scheme).

3We use � and ⊢ differently as follows: X � Y is a statement that X entails Y (in a given
frame); in contrast, X ⊢ Y is a sequent rather than a statement.
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First, the 3 operator preserves the order of entailment �; that is, the
rule M below is valid in all neighborhood incompatibility frames.4

p ⊢ q
3p ⊢ 3q

M

M is valid because p � q (i.e., I(q) ⊆ I(p)) implies 3p � 3q (i.e., I(3q) ⊆
I(3p)) in any frame. To show this, assume I(q) ⊆ I(p) and X ∈ I(3q).
Then, by (3), X has some U ∈ NX such that U ⊆ I(q) ⊆ I(p), which
means, again by (3), thatX ∈ I(3p). A similar argument shows that 2 also
preserves entailment, because any neighborhood intersecting I(q) ⊆ I(p)
intersects I(p) as well.
Apart from these preservation rules, neighborhood semantics is so general

as to provide counterexamples to many rules and axioms that are valid in
other (most notably Kripke’s relational) semantics. For example, 3 may not
preserve incoherence; that is, even when p is incoherent (viz., I(p) = PL),
3p may be coherent (viz., I(3p) 6= PL), thereby failing the rule

p ⊢
3p ⊢ . N3

This fails in a pathological frame of neighborhoods where some X ∈ PL
has NX = ∅ (and hence, by (3), X /∈ I(3q) for any q). Also, the rule

p ⊢
2p ⊢ N2

can fail in another kind of pathological frame where some X ∈ PL has
∅ ∈ NX (and hence, by (2), X /∈ I(2q) for any q). In fact, N3 and N2 are
valid in the frames without these pathologies.
The facts described so far apply to neighborhood semantics in general,

not only in the incompatibility framework but also in the conventional
possible-world framework. One major divergence of the former from the
latter is the following point regarding completeness. Note that every frame
satisfies one of the following (1)–(3):

N∅ 6= ∅ but ∅ /∈ N∅, (1)

∅ ∈ N∅, (2)

N∅ = ∅. (3)

The modal logic MN that is obtained by adding M, N3, N2 to classical
logic is sound and complete with respect to the frames satisfying (1), in the

4This rule can be avoided if we adopt the standard, more general definition of interior;
see Footnote 2. The rule that is valid instead of M in the more general formulation is to
infer 3p ⊢ 3q from both p ⊢ q and q ⊢ p.
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sense that a sequent or an inference from sequents to another is valid in all
those frames if (soundness) and only if (completeness) it is a theorem or a
derivable rule of MN. Also, let MI3 and MI2 be the logics obtained by
adding M as well as the following axioms I3 and I2, respectively, to classical
logic:

3p ⊢, I3

2p ⊢ . I2

Then MI3 and MI2 are sound and complete with respect to the frames
satisfying (2) and (3), respectively. Moreover, we need to formulate the
completeness of an axiom or rule in a manner that depends on these three
classes of frames, as follows. We say an axiom or rule A is complete with
respect to a semantic condition C if the logics obtained by adding A toMN,
MI3,MI2, respectively, are complete with respect to the classes of frames
satisfying C as well as (1), (2), (3), respectively. On the other hand, we can
define the soundness of A with respect to C in the usual manner.
The most notable divergence of the neighborhood incompatibility seman-

tics from the conventional neighborhood semantics is that the duality of 3
and 2 may fail in the former, even though the non-modal base of the logic
is classical. Recall that the proof (at the end of Section 2) of the duality
in the possible-world framework was based on the interpretation of nega-
tion, ¬, in terms of complement in the space W, so that JpK ∩ J¬pK = ∅

and JpK ∪ J¬pK = W. The incompatibility framework interprets ¬ differ-
ently, which is why the duality fails in the framework. Even though a full
construction of counterexamples requires too many details to cover here,
a rough but heuristic description can be given as follows. In the incom-
patibility framework, I(p) and I(¬p) normally intersect with each other;
indeed, I(p)∩I(¬p) equals the set Inc of incoherent sets of sentences. So, a
coherent point X may have a nonempty U ⊆ Inc = I(p)∩I(¬p) as its only
neighborhood. Then U ∩ I(p) 6= ∅ and hence X ∈ I(2p) by (2) (because
NX = {U}), but at the same time U ⊆ I(¬p); this means X ∈ I(3¬p)
by (3), which then implies X /∈ I(¬3¬p) since X is coherent, that is,
X /∈ Inc = I(3¬p)∩I(¬3¬p). So this X witnesses I(2p) 6⊆ I(¬3¬p), i.e.,
¬3¬p 2 2p. The upshot is that this entailment fails when neighborhoods
are too strong (i.e., when points in them lie in both I(p) and I(¬p)), which
cannot happen in the classical possible-world framework (i.e., no point ever
lies in both JpK and J¬pK). Quite expectably, the other direction 2p � ¬3¬p
of the duality fails when neighborhoods are too weak (i.e., when points in
them lie in neither I(p) nor I(¬p)), which cannot happen in the classical
possible-world framework (i.e., every point has to lie in either JpK or J¬pK).
While there are certain semantic conditions to the effect that neighbor-

hoods are not too strong, or not too weak, with respect to which either of



86 Kohei Kishida

¬3¬p ⊢ 2p and 2p ⊢ ¬3¬p is sound and complete, the more important
point is that neighborhood semantics is more expressive in the incompati-
bility framework than in the classical possible-world framework. This is not
merely in the sense that the duality axioms are invalid, but the semantics
separates the 3 and 2 versions of many axioms; for example,

p ⊢ 3p, T3

2p ⊢ p. T2

Even though these axioms are treated just as equivalent in possible-world
semantics, they correspond to two different semantic conditions on neigh-
borhood incompatibility frames.
To lay out these conditions, we need to introduce a preorder (i.e. a re-

flexive and transitive relation) - on PL defined as follows:

X - Y ⇐⇒ I(X) ⊆ I(Y ).

So, X - Y roughly means X is weaker than Y , or that Y conjunctively
entails X conjunctively. Then - generalizes ⊆ in the sense that X ⊆ Y
entails X - Y ,5 and moreover every semantic interpretant I(p) is closed
upward in terms of -. Then, given any set U ⊆ PL of points, we write ↑U
and ↓U for the--upward and --downward closures of U ⊆ PL, respectively,
i.e.,

↑U = {Y ∈ PL | X - Y for some X ∈ U},
↓U = {X ∈ PL | X - Y for some Y ∈ U}.

In the possible-world framework, the T axiom p ⊢ 3p (or 2p ⊢ p) corre-
sponds to the semantic condition that w ∈ U for all U ∈ Nw. In contrast,
in the incompatibility framework, using the notions defined above we can
modify this condition to obtain the following two versions:

X ∈ ↑U for all U ∈ NX , (4)

X ∈ ↓U for all U ∈ NX . (5)

Then (4) and (5) have the axioms T3 and T2, respectively, sound and
complete.
Here we only show the soundness. That T3 is sound with respect to

(4) means that (4) entails I(3p) ⊆ I(p). To show this, let us assume
X ∈ I(3p). It means some U ∈ NX is included in I(p). Then, because
I(p) is --upward closed, ↑U is still included in I(p). Hence (4) implies
X ∈ ↑U ⊆ I(p), thereby establishing the soundness. We can similarly
5There are more senses in which we can say - generalizes ⊆. See (Kishida, n.d.-b).
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show the soundness of T2 with respect to (5), i.e., (5) entailing I(p) ⊆
I(2p), by assuming X /∈ I(2p). This means some U ∈ NX is disjoint from
I(p). Then, again because I(p) is --upward closed, ↓U is still disjoint from
I(p). Hence (5) implies X ∈ ↓U and therefore X /∈ I(p), establishing the
soundness.
Upward and downward closures differentiate the 3 and 2 versions in the

case of the T axioms, and they do so in the following case as well. Consider
the condition:

If U ∈ NX , there is V ∈ NX such that

every Y ∈ V has some UY ∈ NY with UY ⊆ U. (6)

This means that every neighborhood U of X has another V of X such that
U is (a superset of) a neighborhood of every point in V ; in short, (6) says
that each neighborhood is a neighborhood of a neighborhood. Now replace
the last U in (6) with ↑U , to obtain:

If U ∈ NX , there is V ∈ NX such that

every Y ∈ V has some UY ∈ NY with UY ⊆ ↑U. (7)

Then the following 3 version of the S4 axiom is sound and complete with
respect to (7):

33p ⊢ 3p. S43

To show the soundness, i.e., that (7) entails I(3p) ⊆ I(33p), assume
X ∈ I(3p). This means I(p) includes some U ∈ NX and ↑U . Then (7)
yields V ∈ NX such that every Y ∈ V has some UY ⊆ ↑U ⊆ I(p), i.e. Y ∈
I(3p), which means V ⊆ I(3p). Therefore V witnesses X ∈ I(33p).
Replacing ↑U with ↓U in (7), we can show by essentially the same idea

that S42 is sound:

2p ⊢ 22p. S42

Here is, however, some asymmetry between 3 and 2. Even though S42 is
sound with respect to the condition (7) with ↓U in place of ↑U , it is not
complete. To achieve the completeness, we need to weaken the condition a
little bit, to obtain:

If N∅ 6= ∅, then the following holds for every X ∈ PL:
if U ∈ NX , there is V ∈ NX such that

every Y ∈ V has some UY ∈ NY with UY ⊆ ↓U.
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In the following case the asymmetry between 3 and 2 is even bigger.
Consider the following axioms (which are dual to each other in the conven-
tional framework):

3(p ∨ q) ⊢ 3p ∨3q, C3

2p ∧2q ⊢ 2(p ∧ q). C2

C3 is sound and complete with respect to:

U0, U1 ∈ NX =⇒ there is U2 ∈ NX such that U2 ⊆ ↑U0 and U2 ⊆ ↑U1.
(8)

For the soundness (i.e., (8) entailing I(3p∨3q) ⊆ I(3(p∨q))), assume X ∈
I(3p∨3q) = I(3p)∩I(3q). This means X has some neighborhoods U0 ⊆
I(p) and U1 ⊆ I(q), which, as always, entails ↑U0 ⊆ I(p) and ↑U1 ⊆ I(q).
Now, (8) yields U2 ∈ NX such that U2 ⊆ ↑U0 ⊆ I(p) and U2 ⊆ ↑U1 ⊆ I(q),
i.e. U2 ⊆ I(p)∩I(q) = I(p∨q). Hence U2 witnesses X ∈ I(3(p∨q)). In this
way, C3 is sound with respect to (8), and in fact complete. Nevertheless,
the announced asymmetry between 3 and 2 is that it is an open problem
even what condition has C2 sound and complete, because it does not seem
to work to replace ↑U with ↓U .6 It is also interesting to see how 3 and 2

interact with each other. The axiom

2p ⊢ 3p D

is sound and complete with respect to the condition that U ∩ V 6= ∅ for all
U, V ∈ NX . It is easy to show D to be sound because if X ∈ I(3p), i.e., if
a U ∈ NX has U ⊆ I(p), then the condition says every V ∈ NX intersects
U , thereby intersecting I(p), i.e. X ∈ I(2p).
It is an open problem with respect to what condition the following axiom

B is complete:

p ⊢ 23p; B

but there is a condition with respect to which B is sound:

Given a collection {Xi ∈ PL | i ∈ I } of any size and Y ∈ PL,
if each Xi has some Ui ∈ NXi

with Y /∈ Ui,

then a V ∈ NY has Xi /∈ V for all Xi. (9)

To show the soundness (i.e., (9) entailing I(23p) ⊆ I(p)), suppose Y /∈
I(p). Write I(3p) = {Xi ∈ PL | i ∈ I}; then each Xi lies in I(3p), i.e.,
Xi has some Ui ∈ NXi

such that Ui ⊆ I(p) and hence Y /∈ Ui. Then (9)
yields V ∈ NY such that Xi /∈ V for all Xi, i.e. V ∩ I(3p) = ∅; therefore
Y /∈ I(23p).
6The difficulty arises partly from the lack of understanding of what I(2p ∧ 2q) =
I({2p,2q}) looks like, in contrast to I(3p ∨ 3q) understood simply as I(3p) ∩ I(3q).
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5 Conclusion

We have shown that the idea of neighborhood semantics to interpret modal
operators with interior and closure operations can be straightforwardly im-
ported — quite independently of the notions of truth and possible worlds
— to the framework of incompatibility semantics. The philosophical advan-
tage of putting the notion of neighborhood in this framework is that the
connection between neighborhoods and modality can be directly and natu-
rally interpreted in terms of the idea of counterfactual robustness. We have
also shown the technical merit of the semantics that we can separate the
behaviors of 3 and 2 while keeping the non-modal base of the logic classi-
cal, which, combined with the counterfactual-robustness interpretation, will
enable us to apply modal logic to an even wider range of cases.
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Department of Philosophy, University of Pittsburgh
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kok6@pitt.edu
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What do Gödel Theorems Tell us about

Hilbert’s Solvability Thesis?

Vojtěch Kolman∗

When dealing with the foundational questions of elementary arithmetic,
we find ourselves standing in the shadow of Gödel, just as our predecessors
stood in the shadow of Kant, to the extent that we tend to see Gödel’s
famous incompleteness theorems as a new Critique of Pure Reason. In its
most exuberant form (common particularly among the so-called working
mathematicians) this amounts to claiming that

human reason has encountered its limits by proving that there are
truths which are humanly unprovable (“inaccessible”) and that it is
impossible for our mind to prove its own consistency.1

This attitude is not only at variance with the (Kantian) doubts about the
possibility of proving the unprovability in an absolute sense, but, more
specifically and famously, with the so-called Hilbert program of solving ev-
ery mathematical problem by axiomatic means. In his Parisian address,2

Hilbert not only phrased the conjecture that all questions which human
mind asks must be answerable (the so-called axiom of solvability)3 but
supplemented it, as a kind of challenge, with a list of ten and later of
twenty-three problems of prime interest, including the Second Problem of
the consistency (and completeness) of arithmetical axioms.
In Hilbert’s later writings, particularly in his Königsberg address,4 the

solvability argument takes a more subtle form. Introducing the finite mode

∗Work on this paper has been supported in part by grant No. 401/06/0387 of the Grant
Agency of the Czech Republic and in part by the research project MSM 0021620839 of
the Ministry of Education of the Czech Republic.
1 (Gödel, 1995, p. 310) himself phrased it like this: “there exist absolutely unsolvable
diophantine problems [. . . ], where the epithet ‘absolutely’ means that they would be
undecidable, not just within some particular axiomatic system, but by any mathematical
proof the human mind can conceive.”
2 See (Hilbert, 1900).
3 See (Hilbert, 1900, p. 297).
4 See (Hilbert, 1930).
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of thought (finite Einstellung)5 as a new kind of Kantian intuition, Hilbert
argues that the harmony between nature (experience) and thought (theory)
must lie exactly in the transcendental fact they are both finite.6 As a
consequence, the seeming infinity of human knowledge (particularly in the
realm of mathematics) must have finite roots which are to be identified
with a finite (or finitely describable) system of rules and axioms, and finite
deductions from them.7 Hence, “we must know, we shall know.”8 Obviously,
this is a transcendental deduction of its own kind, namely of inferentialism or
broader axiomatism from finitism, starting with the words: in the beginning
was a sign.9

Gödel (1931), so we are usually told, put an end to Hilbert’s optimism
by proving that the Second Problem is essentially unsolvable. This verdict
is sometimes supported by the seemingly analogous case of Hilbert’s First
Problem, the Continuum Hypothesis, which, partially also due to Gödel,
was proved to be undecidable on the basis of currently accepted axioms. In
this paper I would like to present Gödel’s theorems not as a direct refutation
of Hilbert’s axiom but only as an impulse to phrase it with more caution,
in such a way that the Continuum Hypothesis is no longer regarded as a
real problem. I will draw on two rather different sources, both, however,
connected to Hilbert’s philosophy, namely

• the late metamathematical views of Zermelo and

• Lorenzen’s post-Hilbertian program of operative mathematics.

This will lead me to a closer analysis of the distinction between proof and
truth which does not endorse one of them at the expense of the other, as
Lorenzen, the constructivist, and Zermelo, the Platonist, still tend to do.

1

First, let us discuss the possibility of proving the unsolvability of something.
There is a general pattern: if someone comes along with a positive solution
to a given problem, one can check to see that it does the required work.
But if it is to be shown that the problem is unsolvable, one has to give a
precise delimitation of the methods that can be employed. This brings us to
the difference between method in the broader (general) and in the narrower
(limited) sense.

5 See (Hilbert, 1930, p. 385) and also (Hilbert, 1926, p. 161).
6 See (Hilbert, 1930, pp. 380–381).
7 See (Hilbert, 1930, p. 379) and also (Hilbert, 1918).
8 (Hilbert, 1930, p. 387).
9 See (Hilbert, 1922, p. 163).
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To illustrate the point let us take some famous geometrical problems like
the trisection of an angle or the quadrature of the circle. Due to the methods
of modern algebra we positively know that these problems are unsolvable
by straightedge and compass. However, we also know that the ancient
mathematicians (Hippias, Archimedes) already solved them by extended
— so-called mechanical — means (quadratix, spiral)10 where the epithet
“mechanical” means mainly that they were devised ad hoc. Similarly, if I
give you — meaning somebody sufficiently educated in predicate logic — a
formula, I am quite sure you will be able to decide, in a finite number of
steps, whether it is a tautology or not. What you might not be able to do,
however, is to solve the problem with pre-chosen schematic methods such
as with one particular Turing machine.
Now, as may be expected, a similar observation applies to Gödel’s the-

orems, only this time it is the provability itself the limits of which beg the
question. Gödel showed that for any axiomatic system of arithmetic there
will always be an individual sentence that is undecidable by it. The gist
of his argument lies in the fact that this unprovable sentence of arithmetic
(informally saying “I am unprovable”) is unprovable because it is true (it
is unprovable), its truth being proven as a part of the argument. So, the
whole argument works only because it employs two different concepts of
proof, the first being that of Principia Mathematica (or Peano arithmetic)
and the second being the broader one in which the argument is clinched.
Zermelo, in his unjustly infamous correspondence with Gödel, was prob-

ably the first person to make this observation. Setting himself the natural
question, “What does one understand by a proof?”, his answer went like
this:

In general, a proof is understood as a system of propositions that,
when accepting the premises, yields the validity of the assertion as
being reasonable. And there remains only the question of what may
be “reasonable”. In any case — as you are showing yourself — not
only the propositions of some finitary scheme that, also in your case,
may always be extended. So, in this respect, we are of the same
opinion, however, I a priori accept a more general scheme that does
not need to be extended. And in this system, really all propositions
are decidable.11

What needs to be explained now is the nature of the difference between
proof in the narrower and broader sense, or between the proof and truth,
and the sense in which the second one is “decidable”, or better: complete
and unextendable, as Zermelo claims.

10 See, e.g., (Heath, 1931).
11 See (Gödel, 2003, p. 431).
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2

The analogous differences between the general and narrower construability
or decidability is less problematic since the ad hoc constructive or decision
methods (like quadratix or spiral) are still bound to some humanly feasible
means, and so quite naturally counted as constructions and algorithms. The
traditional problem of arithmetic is its very relationship to the empirical
world, as (already before Kant) expressed in the claim it is a science of
analytical nature. Hence, the whole issue of the difference between the
truth and proof can be boiled down to a single question:

what is arithmetical truth outside of a specific axiomatic system?

It is exactly the lack of any explicit answer to this question that leads to
the Platonist account of arithmetical truth. The usual model-theoretical
exposition operating with an unexplained concept of standard model (“2 +
2 = 4” is true if and only if 2 + 2 = 4) confirms this image, particularly
when it starts to invoke our “intuitions”.
However, to understand sentences like “2 + 2 = 4” and “23 + 4 <

(6 × 3) + 2” you need no more mathematics than that provided by a good
secondary education. This is to say that they are not true or false, at least
not in the first place, because they are deducible in Peano arithmetic, or
happen to inexplicably hold in the standard model, but because they are
transformable into the simpler forms of “4 = 4” and “27 < 20” where only
knowledge of the sequence 1, 2, 3, 4, . . . and the ability to compare sym-
bols is needed. This is the basis of the operativist account of arithmetical
truth as developed by Lorenzen in his Einführung in die operative Logik und
Arithmetik (Lorenzen, 1955), in opposition to the usual standards of Frege
that consider such justifications prescientific. According to Lorenzen,12 the
ultimate foundation of arithmetic (including higher analysis) lies exactly in
these prescientific practices of counting and operating with symbols. They
can be made explicit in synthetic (recursive) definitions like

⇒ |, ⇒ x+ | = x|
x⇒ x|, x+ y = z ⇒ x+ y| = z|

⇒ | × x = x ⇒ | < x|
x× y = p, p+ y = q ⇒ x| × y = q x < y ⇒ x < y|

introducing (in unary form) the number series, the operations +, × and the
relation < respectively. The (true) arithmetical sentences are then defined as

12 See (Lorenzen, 1974, pp. 199–200).
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the consequences of these definitions, prospectively within the broader frame
of game- or proof-theoretical semantics (Lorenzen’s dialogical games).13

As for Gödel’s results, Lorenzen14 claims that instead of being about
arithmetic, as completely given by its operative definition, they merely tell
us something about Peano’s formalism in its particular shape of a first-order
scheme within the language containing 0, s, + and ×. So, coming from
the other side, Lorenzen arrived at the same basic difference as Zermelo.
It is also in accord both with Lorenzen’s later views, as developed in his
Metamathematik (1962), and with Zermelo’s late project of infinitist logic,15

to rephrase this difference in inferentialist terms as the distinction between
two different kinds of consequence: strongly effective or full-formal ⊢ and
the more liberal or semi-formal |=.16 Now, simplifying heavily:
Full-formal arithmetic, like the arithmetic of Peano, is arithmetic in the

narrower sense, and deals with schematically or mechanically given and
controllable axioms and rules. Semi-formal arithmetic or the arithmetic
proper employs — in accord with the infinite nature of the number sequence
1, 2, 3, . . . — rules with infinitely many premises, particularly the (ω)-rule

A(1), A(2), A(3), etc. ⇒ (∀x)(Ax). (ω)

As an arithmetical rule it is transparent and sound enough (or “reasonable”,
as Zermelo would say), as long as one interprets the “etc.” correctly. In
fact, Tarski’s idea of semantics17 employs this kind of rules systematically,
with the (ω)-rule as a special case of the more general

A(N) for all substituents N ⇒ (∀x)A(x). (∀)

This rule is then nothing else than the well-known part of the so-called
semantic definition of truth. Hence, the significance of semi-formalism is to
make us think of semantic definitions as special (more generously conceived)
systems of rules (proof systems) which — starting with some elementary
sentences — evaluate the complex ones by exactly one of two truth values.
The most important point to notice is that the semi-formal rules are called
semantic not because they are infinite but because they, unlike Peano’s
formalism, work with a uniquely determined range of quantification.
As a consequence, arithmetical truth need not be guaranteed by God

or by intuition, but, as (Zermelo, 1932, p. 87) put it, simply by the fact
that the broader concept of “mathematical proof is nothing other than a
system of propositions which is well-founded by quantification.” Zermelo’s

13 See (Lorenzen & Lorenz, 1978).
14 See (Lorenzen, 1974, p. 21–22).
15 See (Zermelo, 1932).
16Both distinctions are due to (Schütte, 1960).
17 See especially (Tarski, 1936).
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claim that all the sentences are decided by his “more general scheme”, i.e.,
completely and correctly evaluated by arithmetical semi-formalism, can be
“proved” by an easy meta-induction like this:

1. Elementary arithmetical sentences (M = P , M < N) are evaluated
unambiguously as true or false only on the basis of calculations with
numerals.

2. Tarski’s definition provides for the evaluation of more complex sen-
tences, particularly because: either for every term N from 1, 2, 3, . . . ,
the sentence A(N) is true and hence (∀x)A(x) is true, or there is N
from 1, 2, 3, . . . such that A(N) is false, and (∀x)A(x) is false, tertium
non datur.

It is a known fact that the intuitionists and some constructivists (including
Lorenzen,18 but not, e.g., Weyl19) question the completeness of this evalua-
tion, arguing that the existence of concrete strategies for proving or refuting
every A(N) doesn’t entail the existence of a general strategy for A(x). To
give a familiar example: there is no problem in demonstrating whether, for
any given even number M , it is the sum of two primes. However, the truth
value of the general judgment that every even number is the sum of two
primes (Goldbach Conjecture) is still unknown, 250 years after the problem
was first posed. Hence, it is possible that we have proofs for all the sentences
A(N) without knowing it, i.e., without having the general strategy of how
to prove a proposition concerning them all.
Consequently, a decision must be made whether the infinite vehicles of

truth and judgment such as (∀) or (ω) should be referred to as rules

1. only in the case when we positively know that all their premises are
true, i.e., when we have at our disposal some general strategy for
proving all of them at once, or

2. more liberally, if we know somehow that all their premises are posi-
tively true or false. The general distinction between the constructive
and classical methods in arithmetic is based on this.

3

Now, if one leaves, like, e.g., Lorenzen and Bishop, the concept of effective
procedure or proof to a large extent open and does not tie it, like, e.g.,
Goodstein and Markov, to the concept of the Turing machine,20 there is still

18 See, e.g., (Lorenzen, 1968, p. 83).
19 See (Weyl, 1921, p. 156).
20For further discussion of these differences see, e.g., (Bridges & Richman, 1987).
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room for an effective, yet liberal enough semantics (semi-formal system)
and a strongly effective or ‘mechanical’ syntax or axiomatics (full-formal
system). Hence, the constructivist reading does not necessarily wipe out
the differences between the proof and truth, as, e.g., Brouwer’s mentalism
or Wittgensteins’s verificationism seem to. As a result, one can officially
differentiate not only between full-formal ⊢ and semi-formal |= consequence,
but also between semi-formal consequence in a stricter (constructive) sense
and in the more liberal (classical) sense. All these differences stem from
(Gödel, 1931) for the following reason:
Gödel’s theorem affects only the full-formal systems, because their sche-

matic nature makes it possible to devise a general meta-strategy for con-
structing true arithmetical sentences not provable in them. The unprovable
sentence of Gödel is of the so-called Goldbach type, i.e., it is of the form
(∀x)A(x) where A(x) is a decidable property of numbers. Now, Gödel’s ar-
gument shows that this decision is done already by Peano axioms in the sense
that all the instances A(N) are deducible and, hence, set as true. So, with
Gödel’s proof we have a general strategy for proving all the premises A(N)
at once, which makes the critical unprovable sentence (∀x)A(x) construc-
tively true, i.e. provable by means of the (ω)-rule interpreted constructively.

Lorenzen (1974, p. 222) put it like this:21

ω-incompleteness [. . . ] demonstrates that not all constructively true
propositions are logically deducible from the axioms. This should
come as no surprise. A universal proposition (∀x)A(x) is construc-
tively true when A(N) for all N is true. But in order logically to
deduce the universal proposition (∀x)A(x), we must first deduce A(x)
with a free variable x. So we should have expected ω-incompleteness.
But Peano arithmetic is ω-complete if we restrict ourselves to addition.
The point of Gödel’s proof was to demonstrate that Peano arithmetic
with only addition and multiplication (without the higher forms of
inductive definition) already shows the ω-incompleteness that was to
be expected in general.

It is of real significance here that it was none other than (Hilbert, 1931)
who — probably still unaware of Gödel’s result22 — employed the (ω)-rule
as a means of improving his old project of founding arithmetic on axiomatic
grounds. So, our claim that Gödel’s theorems did not destroy but refine
Hilbert’s optimism in the suggested semi-formal way is sound also from a
historical perspective. And using the concept of semi-formalism again, we
can extend this optimism yet further by claiming that full-formal systems

21Translation by K.R. Pavlovic in (Lorenzen, 1987, p. 240–241).
22 See Bernays’ remarks in (Hilbert, 1935, p. 215) but also Feferman’s commentary in
(Gödel, 1986, pp. 209–210).
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such as Peano and Robinson arithmetic are consistent simply because their
axioms are provable in the arithmetical semi-formalism and, moreover, even
in its constructive variant. This, in fact, is the usual model-theoretic argu-
ment:

if a theory is inconsistent, then it does not have a model,

in a relative setting:

if Peano arithmetic is inconsistent, then so is the arithmetical semi-
formalism.

In the first case the consequent is precluded “by fiat”. In the second case
one does not need to use such tricks, because it was actually proved that the
rules of semi-formalism do not evaluate arithmetical sentences incorrectly.

4

Now, should we perhaps follow Zermelo further and discard the narrower
concept of proof totally by saying that everything true is provable? While
the danger of the first extreme lies in the fact that the narrower, limited
methods can and eventually will fail because of their limitedness, the short-
coming of Zermelo’s alternative is that it is safe to the point of becoming
totally idle. The problems of set theory are a particularly good example
of such a situation. Let me illustrate it very briefly with the help of the
concept of continuum.23

Continuum has had an intricate historical development, from the Pytha-
gorean definition of proportion by means of a reciprocal subtraction, through
the Euclidian theory of points constructible by means of a ruler and com-
pass, to the Cartesian idea of numbers as roots of polynomials. By grasping
real numbers as arbitrary (Cauchy) sequences, rather than as sequences that
are in some sense law-like, Cantor believed himself to have won the whole
game by simple “fiat”. But this was no more substantiated than it would
have been for the Greeks to define real numbers as points constructible by
whatever means, or for us now to say that everything true is provable. Ob-
viously, this would dispose of problems like the quadrature of the circle, the
axiomatizability of arithmetic, or the “Entscheidungsproblem”, but it would
also dispose of the whole of mathematics — insofar as it is understood as
an enterprise of solving problems somehow related to human lives rather
than as a pure science indulged in for its own sake. Hence, the reason for
retaining and developing the difference between the broader (and vaguer)
and the narrower (more limited) sphere of methods lies in the fact that it

23For a detailed account see (Kolman, n.d.).
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mirrors the general process of explaining something complicated through
something less complicated.
Set theory runs into problems because of its failure to keep these differ-

ences apart. Set theorists believe, on the one hand, that the Continuum
Hypothesis is either true or false whether we know it or not, but, on the
other hand, the only specific idea they can give us about its standard model
is one loosely connected to Zermelo’s full-formalism, by which it is, how-
ever, undecidable, i.e. neither true nor false. So, because the only criterion
of truth is the incomplete and possibly inconsistent full-formalism, we must
face the possibility that the status of questions like “how big is the con-
tinuum?” may be similar to that of questions like “how many hairs does
Othello have?”, not because we do not yet know the answer, but because
no answer is available. This deficit does not make such questions human-
independent, but only deeply fictitious, the reason for which, again, is not
that they are still undecided (such a decision is not difficult to make, e.g.,
by endorsing V = L) but because nothing really important hinges on them.
My conclusion may resemble the position of (Feferman, 1998, p. 7), ac-

cording to whom the Continuum Hypothesis, unlike Hilbert’s Second Prob-
lem, “does not constitute a genuine definite mathematical problem,” be-
cause it is an “inherently vague or indefinite one, as are propositions of
higher set theory more generally.” I have attempted, however, to be more
specific about where the difference between set theory and arithmetic comes
from. The so-called iterative hierarchy, described in a pseudo-constructive
manner by Zermelo’s axioms, is not a model in the same sense in which the
standard model of arithmetic is, because the concept of subset is left unex-
plained, along with the range of quantification and the respective (∀)-rule.24
To sum up: Hilbert’s solvability thesis is not refuted by Gödel’s incom-

pleteness theorems, nor by the Continuum Hypothesis; however, they oblige
us to rephrase it as follows: every problem is (potentially) solvable if it is
endowed with well-defined truth-conditions, or, as Zermelo would put it,
with a “reasonable” concept of truth.

Vojtěch Kolman
Department of Logics, Faculty Philosophy & Arts, Charles University
nám. Jana Palacha 2, 116 38 Praha 1, Czech Republic
vojtech.kolman@ff.cuni.cz

24One can possibly say that set theory has failed both of Frege’s criteria for reference, as
described so influentially by Quine, namely “to be is to be a value of a bound variable”
and “no entity without identity” with “|P (N)| =?” taken as evidence.
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Wittgenstein on Pseudo-Irrationals,

Diagonal Numbers and Decidability

Timm Lampert∗

In his early philosophy as well as in his middle period, Wittgenstein holds
a purely syntactic view of logic and mathematics. However, his syntactic
foundation of logic and mathematics is opposed to the axiomatic approach of
modern mathematical logic. The object of Wittgenstein’s approach is not
the representation of mathematical properties within a logical axiomatic
system, but their representation by a symbolism that identifies the prop-
erties in question by its syntactic features. It rests on his distinction of
descriptions and operations; its aim is to reduce mathematics to operations.
This paper illustrates Wittgenstein’s approach by examining his discussion
of irrational numbers.

1 Tractarian heritage

In the Tractatus, TLP for short, Wittgenstein distinguishes between oper-
ations and functions. As do Russell and Whitehead in the Principia Math-
ematica, PM for short, he uses “functions” in the sense of “propositional
functions”, which are representable by symbols of the form ϕx within a
logical formalism. In contrast, the concept of operation is Wittgenstein’s
own creation. According to Wittgenstein, the “basic mistake” of the sym-
bolism of PM is the failure to distinguish between propositional functions
and operations (WVC p. 217, and TLP 4.126). In this respect, the syntax
of PM suffers from the same deficiency as the syntax of ordinary language.
Wittgenstein distinguishes between functions and operations by the crite-
rion of the possibility of iterative application, TLP 5.25f.:

(Operations and functions must not be confused with each other.)

A function cannot be its own argument, whereas an operation can
take one of its own results as its base.

∗ I am grateful to Victor Rodych for discussions and comments.
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Due to its possible iterative application, an operation generates a series
of internally related elements. This series is defined by an initial member,
η, and an operation, Ω(ξ), that must be applied to generate a new member
from a previous one ξ. The form of such a definition is [η, ξ,Ω(ξ)]. This series
is not defined as an “infinite extension” but by the iterative application of
an operation that determines forms. The natural numbers, for example,
are defined by the operation +1. Starting with 0 as initial member, this
yields the series 0, 0 + 1, 0 + 1 + 1 etc., which is denoted by [0, ξ, ξ + 1],
cf. TLP 6.03. According to Wittgenstein’s point of view numbers are forms
defined by operations (cf. WVC, p. 223). They are neither objects denoted
by names nor classes or classes of classes described by functions. While
functions determine the extension of a property independent of its symbolic
representation, operations determine the syntax of symbols. Operations do
not refer to anything outside the symbols; they determine formal (internal)
properties rather than material (external) properties. Operations do not
state anything, but determine how to vary the form of their bases (inputs)
without contributing any content. In contrast, functions, e.g., “x is human,”
state that their arguments have some property, which is not determined by
the symbol of the arguments. A function determines an extension of objects,
namely the “totality” or class of objects that satisfy the function.
Operations are internally related, they can “counteract the effect of an-

other” and “cancel out another” (TLP 5.253); they form a system. In TLP
Wittgenstein reconstructs so called “truth functions” such as negation, con-
junction, disjunction and implication as “truth operations”. They form the
system of logical operations. Likewise, he understands addition, multipli-
cation, subtraction and division as a system of “arithmetic operations”. In
both cases, this forces significant changes in the traditional symbolism of
logic and arithmetic. In logic, he invents his ab-notation, in which the truth
operators are not represented by ¬,∧,∨ or → but by ab-operations, which
assign a- and b-poles to a- and b-poles (cf., e.g., CL, letters 28, 32, NL,
pp. 94–96, 102, MN, pp. 114–116, and TLP 6.1203). By this he intends to
overcome within propositional logic the “basic mistake” of PM in failing to
distinguish symbolically between operations and functions. In arithmetic
he defines natural numbers by operations, cf. TLP 6.02–6.04, and indicates
a symbolism of primitive arithmetic wholly resting on operations (cf. TLP
6.24f.). He explicitly opposes this to the Frege’s and Russell’s program to
reduce mathematics to a “a theory of classes” (TLP 6.031), these classes
being defined by propositional functions.
Wittgenstein called for a symbolism based on operations as a counter-

program to Frege’s and Russell’s logicism. This still holds for his middle
period. Instead of his peculiar term “operation,” he frequently uses the
common expression “law,” and instead of the technical term “propositional
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function,” he uses the less specific expression of “description”. Yet, he
still claims that mathematics is dealing with systems, operations or laws
and not with totalities, functions or descriptions (cf., e.g., WVC, p. 216f.,
or MS 107, p. 116). Likewise, he claims that “the falsities in philosophy
of mathematics” are based on a confusion of the “internal properties of
a form”, which are determined by operations, and “properties” in terms
of material properties of daily life, which are identified by propositional
functions, cf. PG II, § 42. He also calls the view that bases mathematics
on functions the “extensional view” whereas he professes an “intensional
view” that identifies mathematical properties by syntactic properties of an
adequate symbolic representation (PG II, VII, § 41, RFM V, § 34–40).
In the following we go on to illustrate Wittgenstein’s intensional view in

his intermediate (1929–1934) discussion of irrational numbers. Finally, we
will apply this discussion to diagonal numbers, as well as to the notions of
enumerability, decidability and provability. We hereby want to address two
challenges faced by Wittgenstein’s program:

(i) How to apply it to other parts of mathematics besides primitive arith-
metic?

(ii) How to relate it to the basic notions and impossibility results of mod-
ern mathematical logic?

2 Irrationals

Cauchy sequences

Irrationals are customarily defined as equivalence classes of identical Cauchy
sequences. A Cauchy sequence is an infinite sequence of rational numbers
a1, a2, . . . such that the absolute difference |am− an| can be made less than
any given value ǫ > 0 whenever the indices m,n are taken to be greater than
some natural number k. Two Cauchy sequences a1, a2, . . . and a

′
1, a

′
2, . . .

are identical if and only if for any given ǫ > 0 there is some natural number
k such that |an − a′n| < ǫ for all n greater than k. The idea behind this
definition is that all methods approximating the “true expansion” of an irra-
tional number must once result in the same expansion up to a certain digit.
For example, the methods illustrated in Tables 1 and 2 both approximate
the true decimal expansion of

√
2 in a plain manner.

a1 a2 a3 a4 a5 a6 a7 a8 a9

x2 < 2 1 1.25 1.375 1.40625 1.4140525

x2 > 2 2 1.5 1.4375 1.421875

Table 1. Method 1
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

x2 < 2 1 1.4 1.41 1.414 1.4141

x2 > 2 2 1.5 1.42 1.415 1.4142

Table 2. Method 2

At some point the methods come up with identical decimal expansions
up to a certain digit. For example, from a9 on both sequences begin with
1.41. Thus, going further and further one approximates more and more
“the” expansion of the irrational number. However, no finite sequence will
ever represent the “true expansion”, as it is the limit of all sequences ap-
proximating it; the “true expansion” is beyond all finite sequences — it is
infinite.
With respect to Wittgenstein’s point of view, it is important to note that

these methods of approximation do not generate the next digits by iteration.
Instead, at any step it must be checked whether the square of the result is
< 2 or > 2.

Wittgenstein’s critique

Wittgenstein’s main critique of the definition of irrational numbers in terms
of Cauchy sequences is that this definition does not provide an identity
criterion, which decides the identity of two real numbers (PR §§ 186, 187,
191, 195). The problem is that, on the standard conception of irrational
numbers as infinite sequences of rational numbers, for any infinite sequence
s there are infinite many sequences that are identical with s up to a certain
digit k. However, the definition does not provide a method to specify some
upper bound for k in comparing two arbitrary real numbers. Thus, no
finite comparison is sufficient to decide whether two arbitrary sequences
are identical. The definition has it that the “true expansion” lies beyond
all finite sequences. Therefore, it provides only a sufficient criterion for
a negative answer but no sufficient criterion for a positive answer to the
question of identifying arbitrary real numbers. In this respect, we have the
same situation as in the case of determining within a traditional logical
calculus whether some formula of first order logic is not a theorem.
One might reply to this critique that one cannot claim the decidability

of things that simply are not decidable; the nature of the real numbers as
infinite sequences implies that one cannot decide upon the identity of two
real numbers. However, in fact it is from the purported definition that
the problem arises, and it is not carved in stone that this indeed captures
the “nature” of real numbers. According to Wittgenstein’s analysis the
definition is nothing but a consequence of the extensional view of modern
mathematics. This spuriously takes the designations of real numbers by
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ordinary language as descriptions of everyday properties, which determine
a certain extension. For example, in the case of

√
2 one wrongly analy-

ses the ordinary explanation in terms of “the number that when multiplied
by itself is identical with 2” as a description of a material, non-symbolic
property. This property is then conceived as being satisfied by the “true
infinite expansion”, which is approximated by multiplying finite sequences
with themselves and comparing the result to 2. In order to come to under-
stand Wittgenstein’s point of view, it is crucial to recognize that there is an
alternative to this conception that refers to known mathematics. According
to this point of view, real numbers are not defined by extensions, but by
laws in the sense of Wittgenstein’s operations.

Wittgenstein’s alternative

In order to come to understand Wittgenstein’s position one must recog-
nize that he rejects methods of approximation such as the above illustrated
methods 1 and 2. Although these kinds of methods of approximation might
be called “laws,” they are not “laws” in terms of operations. They are not
operations because they do not generate a sequence by iteration. How to
go on does not simply depend on the previous members but on a compar-
ison between the last member and some condition. For example, at each
stage in the development of the decimal expansion of

√
2, one must con-

sider whether squaring the last member is greater or smaller than 2. This
method is incompatible with Wittgenstein’s purely syntactic foundation of
mathematical properties. In his program, any sequence must be definable
by an operation that determines nothing but the syntax of the members of
the sequence. Only in this way is the property constituting the sequence re-
duced to an internal property of forms that can be identified by the symbolic
features of the members of the series.
Wittgenstein’s well known rejection of “arithmetical experiments” is

based on his requirement to define sequences by syntactic means alone,
PR § 190:

In this context we keep coming up against something that could be
called an “arithmetical experiment”. Admittedly the data determine
the result, but I can’t see in what way they determine it (cf., e.g., the
occurrences of 7 in π.) The primes likewise come out from the method
for looking for them, as the results of an experiment. To be sure, I
can convince myself that 7 is a prime, but I can’t see the connection
between it and the condition it satisfies. — I have only found the
number, not generated it.

I look for it, but I don’t generate it. I can certainly see a law in the
rule which tells me how to find the primes, but not in the numbers
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that result. And so it is unlike the case + 1
1! , − 1

3! , +
1
5! etc., where I

can see a law in the numbers.

I must be able to write down a part of the series, in such a way that
you can recognize the law.

That is to say, no description is to occur in what is written down,
everything must be represented.

The approximations must themselves form what is manifestly a series.

That is, the approximations themselves must obey a law.

The series of primes is Wittgenstein’s paradigm of a series that cannot be
generated by an operation. Although operations are available to generate
an infinite series of primes, no operation is known to generate the primes in
a certain order that ensures that all primes are enumerated. In his detailed
discussions of primes in other places, Wittgenstein draws the consequence
that we still lack of a clear concept of “the” primes. All we have is a
concept of what “a” prime is, which allows us to decide whether a given
number is prime or not (PR § 159, 161, cf. (Lampert, 2008)). For the same
reason, he rejects the definition of a real number P as the dual fraction with
an = 1 if n is prime and an = 0 otherwise (cf. PG II, § 42). This definition
does satisfy the definition of real numbers by Cauchy sequences, but it does
not satisfy Wittgenstein’s criterion of being definable by an operation. In
the quoted passage, Wittgenstein emphasizes that we do have a method
to look for the next prime: we go through the series of natural numbers
and decide one by one whether each member satisfies the condition to be
divisible only by 1 and itself. However, this method does not satisfy his
standards of a definition by operation. As long as we are not able to reduce
the property of being a prime to some operation generating the series of
primes by iteration, “we can’t see the connection” between the members of
the series and the condition they satisfy: we cannot “recognize the law” in
the series. The problem is the same as with the above illustrated methods
of approximating

√
2. Instead of generating the next member by iteration,

we must decide whether some condition is satisfied or not in order to find
the next member.
Wittgenstein’s reference to the series of primes as an illustration of arith-

metical experiments demonstrates that his concept of operation is not equiv-
alent to that of primitive recursive function. Primes are definable by a prim-
itive recursive function, but not by an operation.1 Iteration in the case of
operations means that the output of the nth application of an operation is

1The question in what sense Wittgenstein characterizes real numbers as “laws” is thor-
oughly discussed in the literature (cf. (Da Silva, 1993), (Frascolla, 1994, pp. 85–92),
(Marion, 1998), (Rodych, 1999) and (Redecker, 2006, ch. 5.2)). However, the main rea-
son why the identification of laws with Wittgenstein’s notion of operations seemed to
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itself the input of the n + 1th application of the very same operation. In
contrast, recursion in the case of primitive recursive functions means that
the value of a primitive recursive function f for the successor of n, S(n), is
defined by referring to the value of the very same function f for n. This
does not imply that the values of f are themselves their arguments. This is
only true in case of the successor function, which itself is primitive recur-
sive. However, the identity function, e.g., I(x) = x, and the zero function,
Z(x) = 0, on which the definition of primitive recursive functions are based,
are functions and do not define a series by iterative application. The same
holds for primitive recursive characteristic functions. They have the form
“f(x) = 0 if ϕ(x) and f(x) = 1 otherwise.” In Wittgenstein’s terms, char-
acteristic functions are a paradigm of “descriptions” and not of operations.
In contrast, any iteration by applying operations has the form an = Ω′~ai

where ~ai stands for members previous to an. For example, the series of
Fibonacci numbers is defined by an = an−2 + an−1. Recursion in the case
of primitive recursive functions is part of a strategy of defining primitive
recursive functions, whereas operations are not defined by iteration but ap-
plied iteratively. They are defined by some purely syntactic variation that
generates a formal series of systematically varied members if iteratively ap-
plied. In the case of Fibonacci numbers, this operation consists of adding
the last two members. Starting from 0 and 1, this generates the series 0, 1,
0+1, 1+(0+1), (0+1)+(1+(0+1)), (1+(0+1))+((0+1)+(1+(0+1)))
etc.2

If not even primitive recursive functions satisfy Wittgenstein’s standards
of a purely syntactic foundation of mathematics, this causes doubts whether
his programme is realizable at all. Likewise, his rejection of arithmetical ex-
periments and his claim to “recognize the law” in the series has caused
trouble. The decimal sequences of irrationals do not satisfy Wittgenstein’s
demand for sequences that manifestly obey a law. Do not irrationals con-
tradict Wittgenstein’s claim from their very nature? Thus, it seems unclear
how Wittgenstein’s point of view can even do justice to such basic irrational
numbers as π and

√
2 (cf., e.g., (Redecker, 2006, p. 212)).

However, these problems only arise if one overlooks the fact that the
possibility of definitions by operations depends on the mode of representa-
tion. In case of irrationals, the syntactic features of the decimal system are
responsible for their “lawless” representation. However, this kind of repre-
sentation is not essential; it obscures their lawful nature instead of revealing
it. In MS 107 p. 91, Wittgenstein writes (translated by T. L.):

be insufficient to most commentators is that operations in Wittgenstein’s sense were not
distinguished sharply from the notion of primitive recursive functions.
2Brackets are merely introduced to identify an−2 and an−1.
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The procedure of extracting
√

2 in the decimal system, e.g., is an
arithmetical experiment, too. However, this only means that this
procedure is not completely essential to

√
2 and a representation must

exist that makes the law recognizable.

To see the connection between the members of a sequence representing a
real number and the condition or property that these members satisfy, one
must refer to an equivalence transformation that reduces this property to
an internal property of forms. There is no equivalence transformation be-
tween

√
2 and a decimal number. This already shows that it is impossible

to represent
√

2 by the decimal system; whatever decimal number one gen-
erates, it cannot be identical with

√
2— referring to “infinite extensions” is

just another expression of this deficiency. However, using the representation
by continued fractions, it is possible to represent

√
2 by an operation, cf.

MS 107, p. 126 (translated by T. L., cf. MS 107, p. 99):

[. . . ] in 1
2 ,

1

2+
1
2

, 1

2+
1

2+
1
2

etc. one can recognize the law one cannot

recognize in the decimal development.

The connection between the property of
√

2 as “the number that mul-
tiplied with itself is identical with 2” and its definition by its continued
fraction is due to equivalence transformation:

x2 = 2 | √

x =
√

2 | a = 1 + (a− 1)

x = 1 + (
√

2− 1) | a = 1
1

a

x = 1 + 1
1√
2−1

| 1
a−b

= a+b
a2−b2

x = 1 + 1√
2+1

√
2
2−12

| a = a√
2
2−12

x = 1 + 1√
2+1

| x =
√

2, a+ b = b+ a

x = 1 + 1
1+x

| −1

x− 1 = 1
1+x

| 1 + x = 2 + (x− 1)

x− 1 = 1
2+(x−1)

Thus,
√

2−1 is representable by the operation 1
2+(x−1) . Starting with 1−1

for x−1, the iterative application of this operation yields the series 1
2+(1−1) ,

1

2+
1

2+(1−1)

, 1

2+
1

2+
1

2+(1−1)

etc. This is identical to the series Wittgenstein

mentions if one eliminates +(1 − 1) by an equivalence transformation. In
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the short notation of regular periodic continued fractions,
√

2 is definable by
[1; 2]. A continued fraction of a real number is periodic if and only if the real
number is a quadratic irrational (theorem of Lagrange). The notation of
continued fraction identifies a common property of quadratic irrationals by
a common syntactic feature, and thus shows that this property is an internal
property. Other irrational numbers are representable by regular continued
fractions that are not periodic but still definable by operations, such as the
Euler number e : [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]. Another type of irrational
numbers are not definable by operations within regular continued fractions
but within irregular continued fractions such as 4

π
= 1+ 12

2+
32

2+
52

. . .

. Further-

more, the continued fraction representation for a number is finite if and only
if the number is rational. This shows that this mode of representation re-
veals by its syntactic properties internal properties of numbers that are not
identified by the decimal number system. We learn more about “the laws
of numbers”, their internal structure, by representing them in the notation
of continued fractions.
Mathematical proofs reveal this internal structure by equivalence trans-

formations. Consider, for example, the golden ratio. Its representation as
a decimal number does not show its exceptional nature. However, by an
equivalence transformation resulting in an operation defining a continued
fraction, internal properties of the golden ratio are identified by the syn-
tactic features of this adequate representation. This procedure reduces the
property that the ratio of two quantities a and b is identical to the ratio of
the sum of them to the larger quantity a to an operation:

φ =
a

b
=
a+ b

a
= 1 +

b

a
= 1 +

1

φ
. (1)

By the operation 1 + 1
φ
, the periodic, regular continued fraction [1; 1] is

defined. By this representation it is proven that the golden ratio is “the
most irrational and the most noble number,” because these properties are
identified by the lowest possible numbers in an infinite regular continued
fraction. Furthermore, by this representation it is proven that the ratio of
two neighboured Fibonacci numbers converges to the golden ratio. For the
Fibonacci numbers are defined by an+1 = an +an−1. Thus, with a = an and
b = an−1 we yield equation (1). The syntax of continued fractions provides
symbolic connections that prove certain internal relations between numbers.
The continued fraction representation of any irrational number is unique.

Thus, any definition of a real number by an operation (or “induction”) defin-
ing a continued fraction satisfies Wittgenstein’s criterion for representing a
real number, MS 107 p. 89 (translation T. L.):
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I want a representation of the real number that reveals the number
in an induction such that I have herewith the only proper, unique
symbol.

It is by this property of uniqueness that the symbolic representation of
irrationals by continued fractions serves as an identity criterion, which allows
one to compare irrationals and rational numbers. The principle is the same
as in the case of comparing fractions by converting them to fractions with
identical denominators. The problem of deciding the identity of numbers
results from a deficiency in their representation, allowing for ambiguity.
This does not mean that there must be one and only one proper notation

for numbers. Nor does it mean that continued fractions are “the” proper
notation of real numbers. Different internal properties of numbers, and here-
with different types of numbers, may be identified by different systems of
representation. And different types of numbers may be comparable within
different modes of representation (cf. MS 107, p. 123). Natural numbers can
be compared according to the conventions of the decimal system, fractions
are comparable by converting them to fractions with identical denomina-
tor, rational numbers and quadratic irrationals are comparable by regular
continued fractions etc. Furthermore, new proofs consist of making new
symbolic connections. They invent new possibilities of comparing numbers
and of revealing their internal relations. Not all internal relations of a num-
ber to other numbers must be revealed within only one notational system.
For example, instead of representing π by an irregular continued fraction

(as quoted above), 2
π
can also be represented by

√
2

2 ·
√

2+
√

2
2 ·

√

2+
√

2+
√

2

2 · · · ·
or π

2 by
2
1 · 23 · 43 · 45 · 65 · 67 · 87 · 89 · · · · . The internal properties of different num-

bers may call for operations referring to different modes of representation.
There need not be a “system of irrational numbers” in the sense as there is
a “system of natural numbers” or a “system of rational numbers” (cf. PG
II, § 42, RFM, app. 3, § 33). As we have seen, only quadratic irrationals are
definable by periodic, regular continued fractions, and another type of irra-
tionals is not even definable by regular continued fractions. Different types
of irrationals are definable by different kinds of operations within different
modes of representation.
According to Wittgenstein’s intensional point of view, our mathemati-

cal comprehension and knowledge depends on the syntax of mathematical
representation. This is not due to psychological reasons. Instead, this is
because mathematical proofs make symbolic connections between different
modes of representation, and because the solvability of mathematical prob-
lems depends on imposing adequate notations. Instead of concluding from
a specific, deficient mode of representation the lawless nature of irrational
numbers, which makes it impossible to decide upon their identity and which
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invokes misconceptions such as “infinite extensions”, one should look for ad-
equate representations that reveal their lawful nature and make it possible
to decide upon their identity. This is done by reducing their properties to
operations instead of conceptualizing them in terms of functions. If such a
reduction is not available, this means that one does not have a full under-
standing of the properties in question. We can then only refer to a vague
understanding expressed within a deficient, descriptive symbolism. Only by
imposing an adequate expression that depicts those properties by its syn-
tactic features, can we be sure that those properties are properly defined.
This approach is in conflict with basic impossibility results of modern

mathematical logic, such as the non-enumerability of the irrationals, the
undecidability of first-order logic or the incompleteness of logical axioma-
tizations of arithmetics. This does not mean that Wittgenstein’s point of
view implies that these results are false in the sense that their negation is
true. Instead, his intensional view implies that it does not make sense to
speak of “the irrationals” unless an operation is known that allows us to
generate them by iteration (and thus to enumerate “the irrationals”). This,
of course, does not mean that he claims that such an operation is or must
be available. Likewise, his intensional view implies that one cannot speak
of decidability or provability in an absolute sense, such that one can say in
advance that certain properties of formulae of a certain syntax are not de-
cidable or provable, independent of the syntactic manipulations that might
be invented to identify those properties. According to Wittgenstein “be-
ing a tautology” (“being true in all interpretations”) or “being a theorem”
of first order logic is not defined properly unless some sort of equivalence
procedure is invented that converts first order formulae to an adequate rep-
resentation that identifies their logical properties by its syntactic properties.
From this point of view, it cannot be said that it is impossible to define such
procedures, because the properties in question that are said to be undecid-
able or unprovable are not represented properly unless such procedures are
available. Likewise, from Wittgenstein’s point of view the incompleteness
of axiomatic systems of arithmetic means in the first place that those sys-
tems do not properly represent the properties in question. It does not mean
that we know that a certain property holds, but its formal representation is
not derivable. Instead, it means that we have a deficient understanding of
that property expressed by an inadequate representation. In the following,
we will show that this conflict between Wittgenstein’s point of view and
the impossibility results can all be traced back to his rejection of “descrip-
tions” in terms of characteristic functions as adequate forms to represent
real numbers.
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3 Pseudo-Irrationals

Wittgenstein illustrates his point of view by providing several definitions of
pseudo-irrationals. These are definitions of irrationals in terms of Cauchy
sequences. However, contrary to

√
2 or π no reductions to operations of

these definitions are available. Thus, according to Wittgenstein there are no
irrationals corresponding to those definitions. Besides the above mentioned
definition of P as the dual fraction 0.a1a2 . . . with an = 1 if n is prime and
an = 0 otherwise, Wittgenstein discusses the following definitions (cf. PG
II, § 42):

π′: The decimal number a1.a2a3 . . . with anan+1an+2 = 000
if anan+1an+2 = 777 in π; otherwise an = an of π.

F : The dual fraction 0.a1a2a3 . . . with an = 1 if xn + yn = zn is solvable
for n (1 ≥ x, y, z ≥ 100); otherwise an = 0.

All these definitions are intended to define an irrational number by a
characteristic function. In this case, the dots “. . . ” refer to an “infinite ex-
tension”. Thus, they are ill-defined according to Wittgenstein’s standards.
They do not identify a number but describe an arithmetical experiment.
Wittgenstein emphasizes that even if the characteristic functions become
reducible to operations, this does not mean that this shows that the def-
initions in fact define irrational numbers. Instead, it means that vague
definitions that do not identify numbers are replaced with exact definitions
that are able to identify numbers. He, for example, considers the situation
when Fermat’s theorem is proven. Due to his rejection of descriptions, he
does not analyse this situation in terms of coming to know the number F
that before was only described. Instead, the proof allows one to replace the
pseudo-definition of F , which does not identify a number (neither a rational
nor an irrational one), with F = 0.11, which is a rational number (PG II,
§ 42). Before, it was not decidable whether “F” denotes a number such that
F = 0.11 or not; the definition by description simply did not define rules
to do this. This demonstrates the lack of meaning that is given to “F” by
the previous definition. The proof, if it is valid, makes connections to other
parts of mathematics that were not recognized before and thus gives “F” a
clear meaning.
Cantor’s proof of the non-enumerability of irrational numbers is based on

defining a diagonal number by a characteristic function. Given some enu-
meration of dual fractions between 0 and 1, the proof of the non-enumera-
bility of “all” of them is based upon the following diagonal number D:

D: The dual fraction 0.a1a2 . . . with an = 0 if the n′th digit of the n′th dual
fraction is 1; otherwise an = 1.
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To this definition, the same objections apply as to the definitions of P , π′

or F : It is a definition by description in terms of a characteristic function.
It describes an arithmetical experiment and does not identify a number,
which can only be done by an operation. However, such an operation is
not available. Thus, it is not meaningful to say that D is an “irrational
number” not occurring in the assumed enumeration of irrationals. This,
of course, does not mean that Wittgenstein claims that “the irrationals”
are enumerable. Instead, he objects to identifying irrational numbers by
non-periodic, infinite decimal or dual fractions. This criterion does not say
anything about a certain type of numbers; it only says something about the
deficiency of the decimal notation (PG II, § 41). This notation cannot serve
as the unique notation for real numbers, as it does not make it possible
to decide upon the identity of numbers. Likewise, Wittgenstein objects to
the picture of a real number as a “point” on the “line” of real numbers.
These items are elements of the extensional view. They arise from treating
“is an irrational number” as well as “is a rational number” or “is a natural
number” as concepts (propositional functions) identifying certain sets of
numbers. This makes it possible to ask about the “cardinality” of those
sets. This, in turn, allows one

(i) to use “infinite” as a number word and speak of “the infinite number”
of objects satisfying some concept, and

(ii) to compare the cardinality of sets by coordinating their elements.

Finally, from this and the method of diagonalization one comes to speak of
sets with a cardinality greater than that of the set of natural numbers. First
and foremost, Wittgenstein’s criticism is that this conceptual machinery is
rather an expression of the extensional view than a description of the nature
of numbers (RFM, app. 3, § 19). He cuts the roots of (transfinite) set theory
by conceptualizing “types of numbers” in terms of “systems” instead of
“sets”. According to his intensional point of view, the criterion to identify
a type of number is the possibility to generate them by an operation. As
this implies their enumerability in terms of the iterative application of an
operation, it does not make sense to speak of types of numbers that are not
enumerable.
According to Church’s thesis, the concept of decidability is representable

by a primitive recursive characteristic function. Thus, on the basis of an
enumeration of first-order logic formulae by their Gödel numbers, the prop-
erty of being a theorem (or a tautology) is representable by the following
number:

T : The dual fraction 0.a1a2 . . . with an = 0 if ⊢ ϕn (or |= ϕn); and an = 1
otherwise.
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On the basis of diagonalization, undecidability proofs demonstrate that
characteristic functions such as the one defining T cannot be primitive re-
cursive. From Wittgenstein’s point of view, these proofs are based upon
a confusion of material and formal properties. As a formal property, the-
oremhood (or being a tautology) is not representable by a characteristic
function. Instead, these properties are only represented adequately by a
shared syntactic property in an ideal notation. This is illustrated by the
representation of tautologies via truth tables or disjunctive normal forms of
propositional logic as well as by means of Venn diagrams in monadic first
order logic. Wittgenstein’s conception calls for equivalence transformations
to identify the truth conditions of logical formulae by means of syntactic
properties of their proper representation. This conception differs from the
traditional semantics of first-order logic. Presuming an endless enumeration
of interpretations ℑ1,ℑ2, . . ., each being either a model or a counter-model
of a formula A, one might represent the truth condition of A according to
these interpretations by the following number:

θ(A): The dual fraction 0.a1a2 . . . with an = 0 if ℑn |= A and an = 1
otherwise.

On the contrary, Wittgenstein’s approach calls for a representation of
the truth conditions of a formula A that allows one to identify the truth
conditions of A without deciding whether single interpretations are models
or counter-models of A. Furthermore, the proper representation of first or-
der formulae should reveal the internal relations of non-equivalent logical
formulae by making it possible to generate the system of truth conditions
by operations. To have an idea of what Wittgenstein envisages, one might
think of a systematic generation of reduced disjunctive normal forms of the
Quine–McCluskey algorithm,3 that represent all possible truth functions
of propositional logic. Likewise, the task of first order logic is to define
analogous disjunctive normal forms and procedures for their unique reduc-
tion within first order logic. To claim that this is impossible presumes the
extensional view that is rejected by Wittgenstein’s endeavour.
Likewise, Gödel represents “x is a proof of y” by a primitive recursive

function xBy in definition 45 of his incompleteness proof (cf. (Gödel, 1931,
p. 358)). On this basis, he expresses “x is provable” by ∃yyBx in definition
46. This is incompatible with Wittgenstein’s claim that the internal rela-
tion of being provable (derivable) should be defined by operations instead of
propositional functions. This, in turn, presumes a proof procedure in term

3Note that the reduced disjunctive normal forms of the Quine–McCluskey algorithm
are unique; any equivalent propositional formula is represented by the same reduced
disjunctive normal form. Ambiguity only comes into play in the second step of the Quine–
McCluskey algorithm that intends to minimize reduced disjunctive normal forms.
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of equivalence transformations to an adequate symbolism that makes such
a definition possible, instead of a proof procedure in terms of logical deriva-
tions from axioms. The lack of such a definition means a deficiency in the
syntactic representation of the formulae in question. According to Wittgen-
stein’s point of view, the conclusion that must be drawn from Gödel’s in-
completeness proof is to look for a formal representation of arithmetic that
is not based upon the concept of propositional function, which is at the
heart of any logical formalization.
Wittgenstein’s intensional reconstruction of mathematics is not meant

to be a “refutation” of the extensional view of modern mathematical logic.
Instead, first and foremost it intends to propose a decisive alternative con-
ceptualization of mathematics that radically differs in its foundations. Ac-
cording to him, the fruit of this endeavour should be a clarification of the
philosophical problems of modern mathematics that will have the same in-
fluence on the increase of mathematics as sunshine has on the growth of
potato shoots (PG, II, § 25).
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University of Berne
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What is the Definition of ‘Logical Constant’?

Rosen Lutskanov∗

The design of this paper is to motivate and introduce informally a def-
inition of the notion of ‘logical constant’ which does not presuppose the
analytic/synthetic distinction. To this end, I’m going to

1. explore the origin of this notion;

2. show why it is important to define it;

3. review some paradigmatic (but ostensibly unsatisfactory) alleged def-
initions;

4. hint at the true relation between the notions of ‘logical constant’ and
‘analyticity’;

5. make manifest the implicit rendering of analyticity which is nested in
the classical definitions of logical constants;

6. discuss the strictly alternative construal of analyticity prominent in
present-day philosophy of logic;

7. provide sketchy definition of logical constants that deviates from the
first but remains true to the second.

1

It was Bolzano, who in the distant 1837 was probably the first to suggest
that there are concepts belonging to logic alone: according to his own exam-
ple, the fact that the question “whether coriander improves one’s memory”
obviously does not concern logic at all, suggests that it is not about corian-
der but studies something different (Hodges, 2006, p. 42). In his own view,
the logic’s subject matter is exhausted by the ‘logical ideas’ which affect the

∗ I would like to express my deep gratitute to the organizers of LOGICA 2008 for the
grant they have awarded me for participation in the conference.
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logical form of propositions (or ‘sentences in themselves’) and are to be sin-
gled out by the condition that their variance modifies the truth-value of any
expression containing them (Siebel, 2002, p. 590). Then came Frege who in
his “Begriffsschrift” (1879) had a clear-cut division of symbols, employed in
formal languages, into two kinds: ‘those that can be taken to mean vari-
ous things’ (variable arguments) and ‘those that have a fully determinate
sense’ (constant functions). As far as logic is concerned, the second kind
of symbols corresponds to Bolzano’s ‘logical ideas’ because it represents
those parts of the formal expression that have to remain invariant under
replacement (Frege, 1960, p. 13). Finally our story reaches Russell, who in
1903 introduced the now familiar term ‘logical constant’ as substitute for
Bolzano’s ‘logical ideas’ and Frege’s ‘logical functions’. According to him
these are the notions accountable for the truth of all propositions which we
view as a priori justified. But he did not provide a formal characterization,
only the following deliberately confusing explanation: “logical constants are
all notions definable in terms of the following: Implication, the relation of a
term to a class of which it is a member, the notion of such that, the notion
of relation, and such further notions as may be involved in the general no-
tion of propositions of the above form” (Russell, 1903, p. 3). The reason for
such striking obscurity is the fact that he thought that “logical constants
themselves are to be defined only by enumeration, for they are so funda-
mental that all the properties by which the class of them might be defined
presuppose some terms of the class” (Russell, 1903, pp. 8–9).

2

Later Russell’s invention survived the demise of his logicism, although its
introduction was initially motivated as part of the attempt to show that
all mathematical notions are reducible to the notions of logic (exemplified
by the ‘logical constants’). Today we are generally inclined to claim that
“logical concept is what can be expressed by a logical constant in a lan-
guage” hence the question “What is logic?” is to be answered by answering
the question “What is a logical constant?” (Hodes, 2004, p. 134). On the
other hand, we just cannot afford treating the notion of logical constant
as indefinable as Russell did, since presently we have at our disposal alter-
native lists of logical constants imposing on us different conceptions about
the subject matter of logic. Famously, Quine did his best to expel Russell’s
“relation of a term to a class of which it is a member” from the list of log-
ical constants, claiming that the theory of the ‘∈’-relation is not logic but
“set theory in sheep’s clothing” (Quine, 2006, p. 66). This excommunication
of set-membership from the province of logic is the sole difference between
Quine’s nominalistic preference for first-order logic and Russell’s ontologi-
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cally exuberant type theory. In the face of this manifest discrepancy, we
have to admit that the only way to provide a motivated choice of logical
framework is to exhibit justified definition of the term ‘logical constant’ and
to show how our conception of logic stems out of it. The age-old ‘laun-
dry list’ comprising the venerable members of the family of logical notions
is not enough. So, which definitions of ‘logical constant’ are currently in
circulation?

3

Luckily, we have plenty of answers of this toilsome question; regrettably,
none of them fared very well. The first attempt to provide rigorous defini-
tion was provided by Carnap in his “Logical Syntax of Language” which was
subsequently simplified by Tarski. His definition was founded on the con-
cepts of ‘premiss-class’ and ‘range’ (Spielraum): two premiss-classes were
said to be ‘equipollent’ if each of them is consequence of the other and the
range was defined as class of premiss-classes M with the property that each
premiss-class which is equipollent to a premiss-class belonging to M also
belongs to M . Then Carnap explained that the range M of a proposition p
represents “the class of all possible cases in which p is true” or “the domain
of all possibilities left open by p” (Carnap, 1959, p. 199). In this setting, it
seems natural to define the ‘logical junctions’ as simple set-theoretical op-
erations on ranges: by ’supplementary’ range of a given range M1 we mean
a range M2 comprising those premiss-classes that don’t belong to M1; then
for a proposition p1 with range M1 we can define its ‘negation’ p2 as the
proposition whose range coincides with the supplementary range of p1. In
the same vein, we can define the ‘disjunction’ of two propositions p1 and p2

as another proposition p3 whose range is the union of the ranges of p1 and
p2 (Carnap, 1959, p. 200). A year later Tarski showed that the definition
can be simplified by substituting ‘content’ for ‘range’ (the content of p is
the class of all non-analytic consequences of p): then p2 is negation of p1 iff
they have exclusive contents and p3 is disjunction of p1 and p2 iff its con-
tent is product of the contents of p1 and p2 (Carnap, 1959, p. 204). These
attempted definitions of Carnap and Tarski were not conceived as satisfac-
tory, probably because they founded the conceptual apparatus of logic on
the conceptual apparatus of set theory. This is not an epistemologically
flawless move: the operation of sentence negation seems more familiar than
the intricate operation of class complementation; that is why the first is not
to be defined by means of the second.
May be this is the reason why later Tarski took another course. In

his famous lecture “What are logical notions” (1966) he proposed the now
classical definition: logical are just these notions which are invariant under
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all permutations of the universe of individuals onto itself. This definition
provoked severe criticisms because it treats as logical properties all car-
dinality features of the domain of discourse. Another painful defect was
exposed by McGee who defined an operation of ‘wombat disjunction’ (∪W )
such that ‘p ∪W q’ is true if ‘p ∨ q’ is true and there are wombats (there
is an element of the domain of the model which satisfies the predicate ‘is
wombat’) and false otherwise (Feferman, 1997, p. 9–10). Clearly, wombat
disjunction is invariant under arbitrary permutations, but it is hard to ad-
mit that it is logical notion — in order to establish the truth or falsity of
any proposition containing essential occurrences of wombat disjunction we
need to corroborate a specific empirical assumption concerning the existence
(or non-existence) of wombats. There are several well-known attempts to
rectify Tarski’s definition by replacing ‘invariance under arbitrary permuta-
tions’ with ‘invariance under arbitrary bijections’ (Mostowski, 1957), ‘rigid
invariance under arbitrary bijections’ (McCarthy, 1981), and ‘invariance un-
der arbitrary homomorphisms’ (Feferman, 1997). As far as we know, no one
of these attempts is able to discriminate properly between the logical and
the empirical (Mostowski’s criterion qualifies ‘unicorn’ as logical notion) or
the logical and the mathematical (Feferman’s criterion renders ‘there exist
infinitely many’ as belonging to logic). That is why, we can recapitulate
this part of the discussion by noticing that “it seems inevitable to conclude
that these proposals inspired by Tarski. . . do not even meet the minimal
requirement of extensional adequacy” (Gomez-Torrente, 2002, p. 20).
A third variant for definition of the notion of logical constant stems from

the works of Gentzen. His followers were inclined to claim that logical
constants are to be identified solely by the introduction and elimination
rules governing their inferential uses. Conjunction, for example, is nothing
but this part of our lexicon that features in inferences like

A, B

A ∧B and A ∧B
A,B

.

This bright idea was shattered by Prior, who provided his infamous tonk-
counterexample dealing with a new particle ‘tonk’ governed by the following
rules:

A
A tonkB

( tonk -Int) and A tonkB
B

( tonk -Elim).

The introduction of ‘tonk’ allows showing the formal language in question
to be inconsistent: just substitute ‘¬A’ for ‘B’ and apply successively (tonk-
Int) and (tonk-Elim). This was intended to mean that not any set of in-
troduction and elimination rules defines a logical constant: something more
had to be added. The mysterious additional ingredient was later identi-
fied as ‘conservativity’ (Belnap) or ‘harmony’ (Dummett). In Dummett’s
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own explanation, “Let us call any part of a deductive inference where, for
some logical constant c, a c-introduction rule is followed immediately by a
c-elimination rule a ‘local peak for c’. Then it is a requirement, for har-
mony to obtain between the introduction rules and elimination rules for c,
that the local peak for c be capable of being leveled, that is, that there is a
deductive path from the premises of the introduction rule to the conclusion
of the elimination rule without invoking the rules governing the constant
c” (Dummett, 1991, p. 248). As Dummett himself readily acknowledged,
“The conservative extension criterion is not, however, to be applied to more
than a single logical constant at a time. If we so apply it, we allow for the
prior existence, in the practice of using the language, of deductive inference,
since there are a number of logical constants” but “the addition of just one
logical constant to a language devoid of them. . . cannot yield a conserva-
tive extension” since “if deductive inference is ever to be said to be able to
increase our knowledge, then it must sometimes enable to recognize as true
a statement that we should not, without its use, been able so to recognize”
(Dummett, 1991, p. 220). This difficulty seems insurmountable: we can use
the leveling of local peaks technique to identify a single particle as logical
constant, but it is not possible to rely on the same strategy to delineate the
realm of logical notions.

4

Up to this point we have reviewed three paradigmatic attempts to provide
definition of the notion of logical constant. It appears that none of them is
materially adequate:

(i) Carnap’s set-theoretic approach construed logical notions using pre-
cise mathematical methods but did not even pose the question which
operations on premiss-classes are to be viewed as belonging to logic;

(ii) Tarski’s model-theoretic approach could not single out the class of
logical constants and experienced serious difficulties with borderline
cases such as non-existent objects and mathematical entities;

(iii) Dummett’s proof-theoretic approach provided justified criteria for log-
icality of single connectives (‘intrinsic harmony’) but couldn’t achieve
generally applicable standard (for ‘total harmony’).

But the material inadequacy is not the sole or even the gravest shortcoming
of these purported definitions. They all were devised with an eye on the
notions currently recognized as ‘logical’ but were not couched in a broad
theoretical framework, clarifying their interplay with some particular ren-
dering of the notion of analyticity. If we turn back we shall see that the
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advent of logical constants was necessitated by the fact that the ‘analytic
program’ (the attempt to identify ‘logical truth’ and ‘analytical truth’) was
essential part of the ‘logicist program’: a truth is analytic if it can be re-
duced to general logical laws and definitions. In a nutshell this reduction
establishes that only logical constants occur essentially in it and the logi-
cal constants were driven out on stage simply to provide a touchstone for
termination of this reductive procedure. That is why, “The question ‘What
is a logical constant?’ would be unimportant were it not for the analytic
program” (Hacking, 1994, p. 3). Now we are able to perceive where the
real problem lies: on the one hand, when we try to define logical constants
and do logic, we silently presuppose that it is possible to discriminate rig-
orously between analytically true (true by virtue of linguistic conventions)
and synthetically true (true by virtue of brute matters of fact); on the other
hand, when we try to make sense of what we are doing and do philosophy
of logic, we overtly blur the analytic/synthetic distinction. In the following
two paragraphs I’ll do my best to explain why this double-mindedness is so
crucial in the present context.

5

When we do mathematical logic, we invariably and unwittingly stick to the
‘Viennese’ orthodoxy. The way formal languages are presented and logical
symbols are employed was modeled upon the paradigm of Wittgenstein’s
Tractatus. Let us remember that his “fundamental idea” was that while
all other words stand for objects, “the logical constants are not represen-
tatives” (Wittgenstein, 1963, prop. 4.0312). This conception was the sole
basis of the idea that the ‘real’ propositions are empirically contentful ‘pic-
tures of reality’, while the propositions of logic are representationally idle
‘tautologies’ (Wittgenstein, 1963, prop. 4.462). Carnap rehearsed the same
line of thought in his works on formal semantics: he started with the sugges-
tion that “we must distinguish between descriptive signs and logical signs
which do not themselves refer to anything in the world of objects, but serve
in sentences about empirical objects” (Carnap, 1958, p. 6) and concluded
that it is possible to classify any sentence as ‘L-sentence’ (that is, ‘logical’
= ‘analytic’ = ‘true or false on logical grounds’) or ‘F-sentence’ (‘factual’
= ‘synthetic’ = ‘true or false by virtue of facts of the world’). Although
developed in different setting, Tarski’s model-theoretic approach to formal
semantics reiterates the same steps which are mirrored in the two types of
clauses in his recursive truth definition: on the one side, we have a base
clause introducing a valuation function that assigns truth-values to atomic
sentences in the model (here sentences receive truth-values on extra-logical
reasons; if we have in mind some particular interpretation of the language
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we can say that they are ‘true or false by virtue of facts of the world’);
on the other side, we have recursive clause which determines in what way
the truth-values of complex sentences built from atomic ones and logical
constants depend on the truth-values already assigned to atomic sentences
(here sentences receive truth-values on intra-logical reasons, the definitional
sub-clauses for the particular logical connectives are analytically true lin-
guistic conventions fixing the meaning of logical vocabulary). Finally, if we
take a look at the rival proof-theoretic approach championed by Dummett,
we would see the same pattern. The insistence on ‘conservativity’ in deal-
ing with introduction and elimination rules for logical constants could be
motivated only by the idea of the purely tautologous character of logically
valid inferences. The local peaks should be in principle ‘levelable’, precisely
because the manipulation with logical vocabulary adds no substantive new
information about the world — in short, because logic is analytic and has
nothing to do with sentences, true by virtue of facts of the world.

6

When we do philosophy of logic, we are often said completely different
things, incompatible with the idea that logical truth (conceived as a paradig-
matic case of analyticity) is to be demarcated from factual truth. Starting
with Wittgenstein again, we see that all his later development — from
“Some Remarks on Logical Form” where he admits that “we can only ar-
rive at a correct analysis by what might be called, the logical investigation
of the phenomena themselves” (Wittgenstein, 1993b, p. 30) to “On Cer-
tainty” where he denied the possibility to distinguish from the outset logical
from empirical propositions because “the river-bed of thoughts may shift”
(Wittgenstein, 1993a, p. 15) — can be seen as rejection of the previous
sharp division of all locutions into vacuously true ‘tautologies’ and mean-
ingful ‘pictures of reality’. Tarski himself, as early as 1930, was committed
to the same line of thought: in a note of Carnap’s diary, dated February 22,
1930 we read: “8–11 with Tarski at a Cafe. About monomorphism, tautol-
ogy, he will not grant that it says nothing about the world; he claims that
between tautological and empirical statements there is only a mere grad-
ual and subjective distinction” (Mancosu, 2005, pp. 328–329). Several years
later, in “On the concept of following logically”, we read: “At the founda-
tion of our whole construction lies the division of all terms of a language into
logical and extra-logical. I know no objective reasons which would allow one
to draw a precise dividing line between the two categories of terms. . . the
division of terms into logical and extra-logical exerts an essential influence
on the definition also of such terms as ‘analytic’ and ‘contradictory’; yet the
concept of an analytic sentence. . . to me personally seems rather murky
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(Tarski, 2002, pp. 188–189). Still later, in 1944 Tarski confessed in a letter
to Morton White that he is inclined to think that “logical and mathematical
truths don’t differ in their origin from empirical truths — both are results
of accumulated experience. . . [and we have to be prepared to] reject certain
logical premises (axioms) of our science in exactly the same circumstances
in which I am ready to reject empirical premises (e.g., physical hypotheses)”
(White, 1987, p. 31). It would not be strange, if these words sound familiar:
the same critiques were formulated by Quine, who met Carnap in Prague
in 1933 and forced him to admit the untenability of the analytic/synthetic
distinction: “Is there a difference in principle between logical axioms and
empirical sentences? He [Quine] thinks not. Perhaps I [Carnap] seek a
distinction just for its utility, but it seems he is right: gradual difference:
they are sentences we want to hold fast” (Quine, 2004, p. 55). In “Truth by
Convention” (Quine, 1936) stressed that some analytically true statements
— definitional conventions — can be overthrown for empirical reasons, and
in “Two dogmas of empiricism” (1951) introduced the field metaphor that
obliterates completely the analytic/synthetic distinction, making evident
that it is “folly to seek a boundary between synthetic statements, which
hold contingently on experience, and analytic statements, which hold come
what may” (Quine, 1961, p. 50). Generally, the destruction of this distinc-
tion was effected in Harvard: from the 1940 disputes of Carnap, Tarski
and Quine, to White’s early “The analytic and the synthetic: an untenable
dualism” (1950), Quine’s ground-braking “Two dogmas of empiricism” and
Goodman’s reflective equilibrium theory developed in “The new riddle of
induction” (1954).

7

The definitions of logical constants we have discussed were shown to be mo-
tivated by the untenable assumption that we are capable of discriminating
rigorously between analytic (true by virtue of linguistic conventions) and
synthetic (true by virtue of matters of fact) propositions. It seems to me
that it is justified to search for a definition of logical constants that conforms
to the mainstream philosophy of logic, a fortiori a definition which does not
presuppose the analytic/synthetic distinction. Needless to say, everything
I can suggest on this topic up to the present moment is sketchy and incon-
clusive. First of all, I admit that logic is concerned with the codification of
inferential practices which are generally ‘out there’ before we try to impose
normative restrictions on them. These practices produce what Brandom
calls ‘material inferences’ — inferences that are not justified with recourse
to the features of logical vocabulary but seem as immediately acceptable.
Any chain of material inferences can be called an ‘argument’ — this sug-
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gests that in general the material inferences are serially ordered and aim at
something — the claim that needs to be established as true or false. Any
argument can be modeled naturally in a slight modification of the frame-
work developed in Gupta and Belnap’s “Revision Theory of Truth” (Gupta
& Belnap, 1993). Let us consider a formal language L and a modelM0 that
assigns to some sentences in L the value ‘true’: these are the ‘axioms’ (in
their ancient interpretation as ‘sentences proposed for consideration’) that
we temporarily accept as true. Then the set of possible material inferences
with premises true in M0 defines a jump-operator correlating with it an-
other model of L (let us designate it as ‘M1’) containing all those sentences
that have to be accepted as true on the basis of the bootstrap model M0

(in general, we do not suppose that the jump operator is monotone: some
previously accepted sentences can be refuted at later stages). The same
procedure can be applied again and again which gives rise to indefinitely
extendible series of models M0, M1, M2, etc. which we shall call ‘an ar-
gument’ (whose premises are the axioms, defined by M0). In the course
of any typical argument A there shall be sentences that at some stage of
its development (say Mn) receive constant interpretation (these are the fix-
points of the jump operator); for those that are evaluated as true in all
successive stages (Mn+1, Mn+2, etc.) we shall say that they are ‘rendered
stably true’ (by the argument A). Now, instead of a single argument, let
us consider a bunch of arguments A1, A2, etc. and suppose that there is a
class of sentences, classified as stably true by any one of them; I propose
these sentences to be called ‘rendered valid’ (by the set of arguments A1,
A2, etc.). My suggestion is to equate logicality with the just defined concept
of ‘validity’; in this way we remain fair to some of traditionally recognized
distinctive features of logical truth:

(i) it is topic-neutral (because it is not relative to a particular argumen-
tative setting);

(ii) it is necessary (because it inevitably shows up in any train of reasoning
belonging to the general argumentative setting);

(iii) it is analytic (because given a valid sentence and a set of argumentative
premises we can demonstrate by means of analysis of the accepted
material inferences that it is genuine proposition of logic).

Moreover, this division of sentences into analytic (rendered valid) and syn-
thetic (not rendered valid) cannot be drawn from the outset because in
general the question “is the sentence s rendered valid by the set of argu-
ments A1, A2, etc.?” is not decidable.
After we have secured a workable notion of logicality, we can ask our-

selves again: what is a logical constant? The answer is that a lexical unit
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is to be treated as piece of logical vocabulary when it is invariably inter-
pretable component of some set of valid sentences. Then we can hunt down
the logical constants using the ‘inverse’ logical approach developed by van
Benthem who suggested that instead of choosing some predefined set of log-
ical constants and asking what types of inferences are validated by them, we
can take some intuitively convincing set of (material) inferences that vali-
date particular propositions and search for the specific constants that are
accountable for them. This methodological shift from predefined normative
accounts of logicality to purely descriptive explorations of inferential prac-
tices was named “Copernican revolution in logic” (Benthem, 1984, p. 451).
What I’ve tried to do here, was to show that the revolution must go on. . .

Rosen Lutskanov
Institute for Philosophical Research, Bulgarian Academy of Sciences
6 Patriarch Evtimii Blvd., Sofia 1000, Bulgaria
rosen.lutskanov@gmail.com
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Epistemic Logic with Relevant Agents

Ondrej Majer Michal Pelǐs∗

1 Introduction

The aim of epistemic logics is to formalize epistemic states and actions of
(possibly human) rational agents. A traditional means for representing these
states and actions employs the framework of modal logics, where knowledge
corresponds to some necessity operator. Modal axioms (K, T, 4, 5,. . . ) then
correspond to structural properties of the agent’s knowledge. Employing
strong modal systems such as S5 leads to representations of agents who
are too ideal in many respects — they are logically omniscient, they have
a perfect reflection of their both positive and negative knowledge (positive
and negative introspection) etc. Sometimes these representations are called
epistemic logics of potential rather than actual knowledge.
Frameworks representing only perfect agents have been frequently crit-

icized, see (Fagin, Halpern, Moses, & Vardi, 2003) and (Duc, 2001), and
some steps towards more realistic representations have been made (e.g.,
(Duc, 2001)). We also attempt to represent agents in an environment more
realistically. Our motivation is epistemic, we shall concentrate on an agent
working with experimental scientific data.

A realistic agent

Our agent is a scientist undertaking experiments or observations. Her typ-
ical environment is an experimental setup and her knowledge is usually
experimental data (inputs and outputs of an experiment/observation) and
some generalizations extracted from the experimental data.

∗Work on this text was supported in part by grant no. 401/07/0904 of the Grant Agency
of the Czech Republic and in part by grant no. IAA900090703 (Dynamic formal systems)
of the Grant Agency of the Academy of Sciences of the Czech Republic. We wish to thank
to Timothy Childers for valuable comments.
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We assume the observations (‘facts’) are typically represented by atoms
and their conjunctions and disjunctions, while generalizations (‘regularities’)
are represented by conditionals (and their combinations). A conditional
is supposed to record a regularly observed connection between the facts
represented by the antecedent and the facts represented by the consequent.
It seems to be clear that for many reasons the material implication is not

an appropriate representation of such a conditional. One of the main reasons
is that the material implication may connect any two arbitrary formulas α,
β. For example,

1. α → (β → α),

2. (α ∧ ¬α) → β,

3. α → (β ∨ ¬β),

are tautologies of classical logic. In our epistemic interpretation the material
implication would make a ‘law’ from every two ‘facts’, which would obviously
make the representation useless. It has other undesirable properties. It
cannot deal with errors in the data, which result to contradictory facts
(a situation which may very well happen in the scientific practice due to
equipment errors). One such error corrupts all the remaining data (from a
contradiction everything follows — see 2). It also admits ’laws’ which are
of no use as their consequent is a tautology (as in 3 — a tautology follows
from anything)
The tautologies 1–3 are just examples of the paradoxes of material impli-

cation. As these ‘paradoxes’ were completely solved only in the systems of
relevant logics, the obvious choice for a conditional for our scientific agent
is relevant implication.

2 Relational semantics for relevant logics

Our point of departure will be the distributive relevant logic R of Anderson
and Belnap (1975). The most natural way to introduce relevant logics is
certainly proof theoretical (see, e.g., (Paoli, 2002)). However we would like
to follow the modal tradition in representing an agent’s epistemic states as
a set of formulas and make the agent’s knowledge dependent not only on
the current epistemic state, but also on the states epistemic alternatives.
Technically speaking we want to use a relational semantics. This cannot be
a standard Kripke semantics with possible worlds and a binary accessibility
relation, but a more general relational structure.
Formally our framework will be based on the Routley–Meyer semantics,

as developed by Mares (Mares, 2004), Restall (Restall, 1999), Paoli (Paoli,
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2002), and others, to which we shall add epistemic modalities. This seman-
tics has been under constant attack for its seeming unintuitivness, but we
believe it fits very well our motivations.
We give an informal exposition of structures in the relevant frame and

definition of connectives (for formal definitions see the appendix A).

Relevant frame

A relevant frame is a structure F = 〈S,L,C,�, R〉, where S is a non-empty
set of situations (states), L ⊆ S is a non-empty set of designated logical
situations, C ⊆ S2 is a compatibility relation, � ⊆ S2 is a relation of
involvement, R ⊆ S3 is an relevance relation.
A modelM is a relevant frame with the relation , where s  ϕ has the

same meaning as in Kripke frames — that s carries the information that
the formula ϕ is true (ϕ ∈ s if we consider states to be sets of formulas).

Situations Situations or information states play the same role as possible
worlds in Kripke frames. We assume, they consist of data immediately
available to the agent. Like possible worlds, we can see situations as sets
of formulas, but, unlike possible worlds, situations might be incomplete
(neither ϕ nor ¬ϕ is true in s) or inconsistent (both ϕ and ¬ϕ are true
in s).

Conjunction and disjunction Classical (weak) conjunction and disjunction
correspond to the situation when the agent combines data immediately
available to her, i. e. data from her current situation. They behave in the
same way as in the case of classical Kripke frames — their validity is given
locally:

s  ψ ∧ ϕ iff s  ψ and s  ϕ

s  ψ ∨ ϕ iff s  ψ or s  ϕ

Weak connectives are the only ones which are defined locally. The truth
of negation and implication depends also on the data in situations, related
to the actual ones, so they are modal by nature. It is possible to define
strong conjunction and disjunction as well (see appendix A).

Implication Implication is a modal connective in the sense that its truth
depends not only on the current situation, but also on its neighborhood. It
can be again understood in analogy with the standard modal reading. We
say that an implication (ϕ → ψ) holds necessarily in a Kripke frame iff
in all worlds where the antecedent holds, the consequent holds as well. In
other words, the implication (ϕ → ψ) holds through all the neighborhood
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of the actual world. In the relevant case the neighborhood of a situation
s is given by pairs of situations y, z such that s, y, z are related by the
ternary relation R. We shall call y, z antecedent and consequent situations,
respectively. We say that the implication (ϕ → ψ) holds at the situation s
iff it is the case that for every antecedent situation y where ϕ (the antecedent
of the implication) holds, ψ (the consequent of the implication) holds at the
corresponding consequent situation z.

s  (ϕ → ψ) iff (∀y, z)(Rsyz implies (y  ϕ implies z  ψ))

The relation R reflects in our interpretation actual experimental setups.
Antecedent situations correspond to some initial data (outcome of measure-
ments or observations) of some experiment, while the related consequent
situations correspond to the corresponding resulting data of the experiment.
Implication then corresponds to some (simple) kind of a rule: if I observe
in my current situation, that at every experiment (represented by a couple
antecedent — consequent situation) each observation of ϕ is followed by an
observation of ψ, then I accept ‘ψ follows ϕ’ as a rule.

Logical situations The framework we presented so far is very weak: there
are just few tautologies valid in all situations and some of the important
ones — those being usually considered as basic logical laws are missing.
For example the widely accepted identity axiom (α → α) and the Modus
Ponens rule fail to hold in every situation.
This is connected to the question of truth in a relevance frame (model).

If we take a hint from Kripke frames, we should equate truth in a frame
with truth in every situation. But this would gives us an extremely weak
system with some very unpleasant properties (cf. (Restall, 1999)). Designers
of relevant logics took a different route — instead of requiring truth in all
situations, they identify the truth in a frame just with the truth in all
logically well behaved situations. These situations are called logical. In
order to satisfy the ‘good behavior’ of a situation l it is enough to require
that all the information in any antecedent situation related to l is contained
in the corresponding consequent situation as well: for each x, y ∈ S, Rlxy
implies |x| ⊆ |y|, where |s| is the set of all formulas, which are true in the
situation s.
It is easy to see that situations constrained in this way validate both the

identity axiom and (implicative) Modus Ponens.

Involvement Involvement is a relation resembling the persistence relation
in intuitionistic logic — we can see it as a relation of information growth.
However not every two situations which are in inclusion with respect to the
validated formulas are in the involvement relation. We require that such an
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inclusion is observed or witnessed. Not every situation can play the role of
the witness — only the logical situations can.

x� y iff (∃l ∈ L)(Rlxy)

Negation In Kripke models the negation of a formula ϕ is true at a world
iff ϕ is not true there. As situations can be incomplete and/or inconsistent,
this is not an option any more. Negation becomes a modal connective
and its meaning depends on the worlds related to the given world by a
binary modal relation C known as compatibility. Informally we can see
the compatible situations as information sources our scientist wants to be
consistent with. (Imagine the data of research groups working on related
subjects.)
The formula ¬ϕ holds at s ∈ S iff it is not ‘possible’ (in the standard

modal sense with respect to the relation C) that ϕ: at no situation s′,
compatible with (‘accessible from’) the situation s, it is the case that ϕ
(either s′ is incomplete with respect to ϕ or ¬ϕ holds there).

s  ¬ϕ iff (∀s′ ∈ S)(sCs′ implies s′ 6 ϕ)

Informally speaking, the agent can explicitly deny some hypothesis (a
piece of data) only if no research group in her neighborhood claims it is
true. This condition also has a normative side: she has to be skeptical in
the sense that she denies everything not positively supported by any of her
colleagues (in the situations related to her actual situation).
If we want to grant negative facts the same basic level as positive facts, we

can read the clause for the definition of compatibility in the other direction:
the agent can relate her actual situation just to the situations which do not
contradict her negative facts.
Depending on the properties of the compatibility relation we obtain dif-

ferent kinds of negations. We shall shortly comment on them.
The compatibility relation is in general not reflexive: inconsistent situ-

ations are not self-compatible and so reflexivity holds only for consistent
situations. It is clear that for an inconsistent self-compatible situation the
clause for negation would not work. On the other hand, inconsistent situa-
tions can be compatible with some incomplete situations.
Nor is C transitive. Let us have situations x, y, z such that x  ϕ,

z  ¬ϕ, and y does not include either ϕ or ¬ϕ. Assume that xCy and yCz.
Then according to the definition of negation it cannot be that xCz.
It is quite reasonable to assume that C is symmetric. This condition

implies that we get only one negation (otherwise we would get left and right
negation) and we get the ’unproblematic’ half of the law of double negation
(if x  ϕ, then x  ¬¬ϕ).
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We also assume C is directed and convergent. Directedness means that
there is at least one compatible situation for each x ∈ S. Convergence says
that there is a maximal compatible situation x⋆. (See appendix A.)
Maximal compatible situations (with respect to x) can be inconsistent

about everything not considered in x. From the symmetry of C we obtain
x�x⋆⋆. If we assume, moreover, x�x⋆⋆, then we get the operation ⋆ with the
property x = x⋆⋆, i.e. the Routley star. The definition of negation-validity
is then written in the form:

x  ¬ϕ iff x⋆ 6 ϕ

The Routley star has been one of the controversial points of the Routley–
Meyer semantics, but in our motivation it has a quite natural explanation: if
compatible situations represent colleagues from different research groups our
agent collaborates with, then the maximal compatible situation correspond
to a colleague (‘boss’) who has all the information the other colleagues from
the group have. Then if the agent wants to accept some negative clause she
does not have to speak to each of the colleagues and ask his/her opinion,
she just asks the ‘boss’ directly and knows that bosses opinion represents
the opinions of the entire compatible research group.
This completes our exposition of relational semantics for relevant logics.

We now move to epistemic modalities.

3 Knowledge in relevant framework

There have been some attempts to combine an epistemic and relevant frame-
work (see (Cheng, 2000) and (Wansing, 2002)), but they have a different
aim then our approach.
From a purely technical point of view there are a number of ways to

introduce modalities in the relevant framework — Greg Restall in (Restall,
2000) provides a nice general overview. As we mentioned, the relevant
framework already contains modal notions. We therefore decided to use
these notions to introduce epistemic modalities rather than to introduce
new ones.
In the classical epistemic frame what an agent knows in a world w is

defined as what is true in all epistemic alternatives of w, which are given by
the corresponding accessibility relation. Our idea of the agent as a scientist
processing some kind of data requires a different approach.
We assume our agent in her current situation s observes (has a direct

approach to) some data, represented by formulas which are true at s. She is
aware of the fact that these data might be unreliable (or even inconsistent).
In order to accept some of the current data as knowledge the agent requires
a confirmation from some ‘independent’ resources.
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In our approach resources are situations dealing with the same kind of
data available in the current situation. A resource shall be more elementary
than the current situation, i.e., it should not contain more data (a resource
is below s in the �-relation). Also the data from the resource should not
contradict the data in the current situation (a resource is compatible with s).

Definition 4 (Knowledge).

s  Kϕ iff (∃x)(sC�x and x  ϕ),

where sC�x iff sCx and x� s and x 6= s.

In short, ϕ is known iff there is an resource (‘lower’ compatible situation
different from the actual one) validating ϕ.
We allowed our agent to deal with inconsistent data in order to get a more

realistic picture. However, the agent should be able to separate inconsistent
data. The modality we introduced provides us with such an appropriate
filter. Let us assume both ϕ and ¬ϕ are in s (e.g., our agent might re-
ceive such inconsistent information from two different sources). The agent
considers both ϕ and ¬ϕ to be possible, but neither of them is confirmed
information as according to the definition, no situation compatible to s can
contain either ϕ or ¬ϕ.

Basic properties

It is to be expected that our system blocks all the undesirable properties of
both material and strict implication. Moreover, we ruled out the validity
of some of the properties of ‘classical’ epistemic logics that we have crit-
icized, in particular, both positive and negative introspection, as well as
some closure properties.
Let us have a relevant frame F = 〈S,L,C,�, R〉. Recall that the truth in

the frame F corresponds to the truth in the logical situations of F (under any
valuation). We will also use the stronger notion of truth in all situations
of F (under any valuation). From the viewpoint of our motivation the
latter notion is more interesting as our agent might happen to be in other
situations than the logical ones.
Our approach makes the ‘truth axiom’ T valid. For any situation s ∈ S,

if ϕ is known at s (s  Kϕ), then there is a �-lower compatible witness
with ϕ true, which makes ϕ to be true at s as well. Thus, formula

Kα → α

is valid.
The axiom K and the necessity rule, common to all normal epistemic

logics, fail. First, let us assume that ϕ is valid formula. The necessity rule
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(
ϕ

Kϕ
) would imply the validity of Kϕ. |= ϕ means that ϕ is true in every

logical situation l. However, for l  Kϕ a confirmation from a different
resource is required, there must be a situation x such that x  ϕ and lC�x,
which, in general, does not need to be the case.
Second, in our interpretation the validity of axiom K is not well moti-

vated and does not hold. K is in fact a ‘distribution of confirmation’: If
an implication is confirmed then the confirmation of the antecedent implies
the confirmation of the consequent.

6|= K(α → β) → (Kα → Kβ)

Introspection As we defined knowledge as independently confirmed data,
the epistemic axioms 4 and 5 correspond in our framework to a ‘second
order confirmation’ rather than to introspection. It is easy to see that both
axioms fail.

6|=Kα → KKα,

6|=¬Kα → K¬Kα

Necessity and possibility We do not introduce possibility using the stan-

dard definition Mϕ
def≡ ¬K¬ϕ. Our idea of epistemic possibility is that our

agent considers all the data available at the current situation as possible. If
we introduce formally s  Mϕ as s  ϕ, then it follows from the T axiom
that in all situations necessity implies possibility:

(∀s ∈ S)(s  Kϕ → Mϕ)

However for the standard dual possibility this is not true.

6|= Kϕ → ¬K¬ϕ

Let us comment on the relation of negation and necessity in our frame-
work. There is a difference between s 6 Kϕ and s  ¬Kϕ. The former
simply says that ϕ is not confirmed at the current situation s, while the lat-
ter says that ϕ is not confirmed in the situations compatible with s. From
this point of view it is uncontroversial that both Kϕ (confirmation in the
current situation) and ¬Kϕ (the lack of confirmation in the compatible sit-
uations) might be true in some situation s (the necessary condition is that
s is not compatible with itself).

Closure properties It is easy to see that the modal Modus Ponens

Kα K(α → β)

Kβ
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does not hold (for the reasons given in the section on K axiom). However,
its weaker version

Kα K(α → β)

β

holds not only in logical situations, but in all situations. If Kα and K(α →
β) are true in any s ∈ S, then s  β. Axiom T and the assumption Rsss
are crucial here.
Contradiction in our system is non-explosive: ϕ and ¬ϕ might hold in a

contradictory situation, which need not be connected to any situation where
ψ holds.

6|= (ϕ ∧ ¬ϕ) → ψ

On the other hand, the knowledge of contradiction implies anything (as a
contradiction is never confirmed):

|= K(ϕ ∧ ¬ϕ) → ψ

Modal adjunction also does not hold — if Kα and Kβ are true in s, then
obviously (α∧β) is true there because of the truth axiom but K(α∧β) does
not need to be true in s. (If each of α and β is confirmed by some resource,
there still might be no resource confirming their conjunction.)

4 Conclusion

We introduced a system of epistemic logic based on the framework of rele-
vant logic. We gave an epistemic interpretation of the relational semantics
for relevant logics and defined epistemic modalities motivated by this inter-
pretation. Instead of introducing additional relations into the framework,
we argued in favor of using modalities based on the relations already con-
tained in the frame.
The whole project is at an initial stage: there is much to be done both

technically and in the area of interpretation. In particular we shall develop
in a more detail the epistemic interpretation of our framework, give an
axiomatization of our system, and characterize its formal properties.

A Relevant logic R

There are more formal systems that can be called relevant logic. From the
proof-theoretical viewpoint, all of them are considered to be substructural
logics (see (Restall, 2000) and (Paoli, 2002)). Here we present the axiom
system and (Routley–Meyer) semantics from (Mares, 2004) with some ele-
ments from (Restall, 1999).
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Syntax

We use the language of classical propositional logic with signs for atomic
formulas P = {p, q, . . . }, formulas being defined in the usual way:

ϕ ::= p | ¬ψ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ψ1 → ψ2

Axiom schemes

1. A → A

2. (A → B) → ((B → C) → (A → C))

3. A → ((A → B) → B)

4. (A → (A → B)) → (A → B)

5. (A ∧B) → A

6. (A ∧B) → B

7. A → (A ∨B)

8. B → (A ∨B)

9. ((A → B) ∧ (A → C)) → (A → (B ∧ C))

10. (A ∧ (B ∨ C)) → ((A ∧B) ∨ (A ∧C))

11. ¬¬A → A

12. (A → ¬B) → (B → ¬A)

Strong logical constants ⊗ (group conjunction, fusion) and ⊕ (group dis-
junction) are definable by implication and negation:

• (A⊕B)
def≡ ¬(¬A → B)

• (A⊗B)
def≡ ¬(¬A⊕ ¬B)

Rules

Adjunction From A and B infer A ∧B.

Modus Ponens From A and A → B infer B.
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Routley–Meyer semantics

An R-frame is a quintuple F = 〈S,L,C,�, R〉, where S is a non-empty set of
situations and L ⊆ S is a non-empty set of logical situations. The relations
C ⊆ S2, � ⊆ S2, and R ⊆ S3 were introduced in section 2, here we sum up
their properties.

Properties of the relation R The basic property of R:

if Rxyz, x′ � x, y′ � y, and z � z′, then Rx′y′z′.

This means that the relation R is monotonic with respect to the involvement
relation.
Moreover it is required that:

(r1) Rxyz implies Ryxz;

(r2) R2(xy)zw implies R2(xz)yw, where R2xyzw iff
(∃s)(Rxys and Rszw);

(r3) Rxxx;

(r4) Rxyz implies Rxz⋆y⋆.

Properties of the relation C Compatibility between two states is inherited
by the states involved in them (’less informative states’):

If xCy, x1 � x, and y1 � y, then x1Cy1.

Moreover, we require the following properties:

(c1) (symmetricity) xCy implies yCx;

(c2) (directedness) (∀x)(∃y)(xCy);

(c3) (convergence) (∀x)(∃y(xCy) implies (∃x⋆)(xCx⋆ and
∀z(xCz implies z � x⋆)));

(c4) x� y implies y⋆ � x⋆;

(c5) x⋆⋆ � x.

Model R-model M is a R-frame F with a valuation function v : P → 2S .
The truth of a formula at a situation is defined in the following way:

• s  p iff s ∈ v(p),

• s  ¬ϕ iff s⋆ 6 ϕ,
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• s  ψ ∧ ϕ iff s  ψ and s  ϕ,

• s  ψ ∨ ϕ iff s  ψ or s  ϕ,

• s  (ϕ → ψ) iff (∀y, z)(Rsyz implies (y  ϕ implies z  ψ)).

As we already said, the truth of a formula in a model and in a frame,
respectively, is defined as truth in all logical situations of this model/frame.
As usual, R-tautologies are formulas true in all relevant frames. Whenever
ϕ is a R-tautology, we write |= ϕ and say that ϕ is a valid formula.
The condition (r1) validates the implicative version of Modus Ponens

(axiom schema 3). It does not validate the conjunctive version (A ∧ (A →
B)) → B, which requires (r3).
(r2) corresponds to the ‘exchange rule’ (A → (B → C)) → (B →

(A → C)), which is derivable from the axioms given above.
(r4) validates contraposition (axiom schema 12). If we work without the

Routley star, this can be rewritten as:

Rxyz implies (∀z′Cz)(∃y′Cy)(Rxy′z′).

Directedness and convergence conditions are necessary for the definition
of the Routley star. From (c1) we obtain the validity of (A → ¬¬A) and
from the last condition (c5) we get the axiom schema 11.
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Betting on Fuzzy and Many-valued Propositions

Peter Milne

1 Introduction

In a 1968 article, ‘Probability Measures of Fuzzy Events’, Lotfi Zadeh pro-
posed accounts of absolute and conditional probability for fuzzy sets (Zadeh,
1968). Where P is an ordinary (“classical”) probability measure defined on
a σ-field of Borel subsets of a space X, and µA is a fuzzy membership func-
tion defined on X, i.e. a function taking values in the interval [0, 1], the
probability of the fuzzy set A is given by

P (A) =

∫

X

µA(x) dP .

The thing to notice about this expression is that, in a way, there’s nothing
“fuzzy” about it. To be well defined, we must assume that the “level sets”

{x ∈ X : µA(x) ≤ α}, α ∈ [0, 1],

are P -measurable. These are ordinary, “crisp”, subsets of X. And then
P (A) is just the expectation of the random variable µA. — This is entirely
classical. Of course, you may interpret µA as a fuzzy membership function
but really we have, if you’ll pardon the pun, in large measure lost sight of
the fuzziness.
So you might ask:

• is this the only way to define fuzzy probabilities?

The answer, I shall argue, is yes.
Defining conditional probability Zadeh offered

P (A|B) =
P (AB)

P (B)
, when P (B) > 0,
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where
∀x ∈ X µAB(x) = µA(x)× µB(x).

One might wonder:

• is this the only way to define conditional probabilities?

The answer, I shall suggest, is no, it is not the only way but it is the only
sensible way.
Zadeh assigns probabilities to sets. What I offer here, using Dutch Book

Arguments, is a vindication of Zadeh’s specifications when probability is
assigned to propositions rather than sets. (But translation between proposi-
tion talk and set and event talk is straightforward. It’s just that proposition
talk fits better with betting talk.)

2 Bets and many-valued logics

I apply “the Dutch Book method”, as Jeff Paris calls it (Paris, 2001), to
fuzzy and many-valued logics that meet a simple linearity condition. I shall
call such logics additive.

Additivity

For any valuation v and for any sentences A and B

v(A ∧B) + v(A ∨B) = v(A) + v(B)

where ‘∧’ and ‘∨’ the conjunction and disjunction of the logic in question.
Additivity is common: the Gödel, Łukasiewicz, and product fuzzy logics

are all additive, as are Gödel and Łukasiewicz n-valued logics.
In order to employ Dutch Book arguments, we need a betting scheme

suitably sensitive to truth-values intermediate between the extreme values
0 and 1. Setting out the classical case the right way makes one generalization
obvious.
Rather than betting odds, which are algebraically less tractable, we use,

as is standard, a “normalized” betting scheme with fair betting quotients.
Classically, with a bet on A at betting quotient p and stake S:

• the bettor gains (1− p)S if A;

• the bettor loses pS if not-A.

Taking 1 for truth, 0 for falsity, and v(A) to be the truth-value of A, we can
summarise this scheme like this:

the pay-off to the bettor is (v(A) − p)S.
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And now we see how to extend bets to the many valued case: we adopt the
same scheme but allow v(A) to have more than two values. The slogan is:
the pay-off is the larger the more true A is.1

Using this betting scheme, we obtain Dutch Book arguments for cer-
tain seemingly familiar principles of probability, seemingly familiar in that
formally they recapitulate classical principles.

• 0 ≤ Pr(A) ≤ 1;

• Pr(A) = 1 when |= A;

• Pr(A) = 0 when A |= ;

• Pr(A ∧B) + Pr(A ∨B) = Pr(A) + Pr(B).

Here ∧ and ∨ are the conjunction and disjunction, respectively, of an addi-
tive fuzzy or many-valued logic.
Other principles that may or may not be independent, depending on the

logic:

• Pr(A) + Pr(¬A) = 1 when v(¬A) = 1− v(A);

• Pr(A) ≥ x when, under all valuations, v(A) ≥ x;

• Pr(A) ≤ x when, under all valuations, v(A) ≤ x;

• Pr(A) ≤ Pr(B) when A |= B.

I’ll show how two of the arguments go as there’s an interesting connection
with the standard Dutch Book arguments used in the classical, two-valued
case.
We let x range over the possible truth-values (which all lie in the interval

[0, 1]). Clearly, for given p, we can choose a value for the stake S that makes

Gx = (x− p)S

negative, for all values of x in the interval [0, 1], if, and only if, p is less than
0 or greater than 1. Hence

0 ≤ Pr(A) ≤ 1.

1The suggested pay-off scheme is, of course, only the most straightforward way to im-
plement the slogan. One could distort truth values: take a strictly increasing function
f : [0, 1]2 → [0, 1] with f(0) = 0, f(1) = 1, and take pay-offs to be given by (f(v(A))−p)S.
Analogously, Zadeh could have taken

∫

X
f(µA(x)) dP to define distorted probabilities. —

And the point is that such “probabilities” are distorted for when f is not the identity
function it may be that P (A) < c even though µA(x) > c, for all x ∈ X.
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So far so good, but here’s the cute bit:

Gx = xG1 + (1− x)G0,

so Gx is negative for all values of x ∈ [0, 1] if, and only if, G1 andG0 are both
negative. From the classical case, we know that the necessary and sufficient
condition for the latter is that p lie outside the interval [0, 1]. It suffices to
look at the classical extremes to fix what holds good for all truth-values in
the interval [0, 1].
Next we consider four bets:

1. a bet on A, at betting quotient p with stake S1;

2. a bet on B, at betting quotient q with stake S2;

3. a bet on A ∧B, at betting quotient r with stake S3;

4. a bet on A ∨B, at betting quotient s with stake S4.

We assume that for all allowed values of v(A) and v(B),

v(A ∧B) + v(A ∨B) = v(A) + v(B) and v(A ∧B) ≤ min{v(A), v(B)}.

Then, where x, y, and z are the truth-values of A, B and A ∧B respec-
tively, the pay-off is

Gx,y = (x− p)S1 + (y − q)S2 + (z − r)S3 + ((x+ y − z)− s)S4.

This can be rewritten as

Gx,y = zG1,1 + (x− z)G1,0 + (y − z)G0,1 + (1− x− y + z)G0,0.

The co-efficients are all non-negative and cannot all be zero. Thus Gx,y is
negative, for all allowable x, y, and z, just in case G1,1, G1,0, G0,1, and
G0,0 are all negative. From the standard Dutch Book argument for the two-
valued, classical case, we know this to be possible if, and only if, p+q 6= r+s.
Hence

Pr(A ∧B) + Pr(A ∨B) = Pr(A) + Pr(B).

3 The classical expectation thesis for finitely-many-valued
Łukasiewicz logics

As an initial vindication of Zadeh’s account, we find that in the context
of a finitely-many-valued Łukasiewicz logic, all probabilities are classical
expectations. That is, the probability of a many-valued proposition is the



Betting on Fuzzy and Many-valued Propositions 149

expectation of its truth-value and that a proposition has a particular truth-
value is expressible using a two-valued proposition. So in this setting, in
analogy with Zadeh’s assignment of absolute probabilities to fuzzy sets, all
probabilities are expectations defined over a classical domain.
In all Łukasiewicz logics, conjunction and disjuction are evaluated by the

functions max{0, x+ y − 1} and min{1, x+ y}, respectively.
Employing Łukasiewicz negation and one or more of Łukasiewicz con-

junction, disjunction, and implication, one can define a sequence of n + 1
formulas of a single variable, Jn,0(p), Jn,1(p), . . . , Jn,n(p), which have this
property (Rosser & Turquette, 1945): in the semantic framework of (n+1)-
valued Łukasiewicz logic it is the case that for every formula A, for all k,
0 ≤ k ≤ n, and for every valuation v,

v(Jn,k(A)) = 1, if v(A) =
k

n
;

v(Jn,k(A)) = 0, if v(A) 6= k

n
.

In the semantic framework of (n + 1)-valued Łukasiewicz logic, for all sen-
tences A,

|= Jn,0(A) ∨Ł Jn,1(A) ∨Ł · · · ∨Ł Jn,n(A) and

Jn,i(A) ∧Ł Jn,j(A) |=, 0 ≤ i < j ≤ n. (*)

From the probability axioms, we have, for all sentences A, that

∑

0≤i≤n

Pr(Jn,i(A)) = 1.

The propositions of the form Jn,i(A) are two-valued, so, (n + 1)-valued
Łukasiewicz logic reducing to classical logic on the values 0 and 1, the logic
of these propositions is classical. Thus, when restricted to these proposi-
tions and their logical compounds, the probability axioms give us a classical,
finitely additive, probability distribution. What we show next is that this
classical probability distribution determines the probabilities of all proposi-
tions in the language.

Theorem 2 (Classical Expectation Thesis). In the framework of (n + 1)-
valued Łukasiewicz logic,

Pr(A) =
1

n

∑

0≤i≤n

iPr(Jn,i(A)).

Proof. From (*) and the two-valuedness of the Jn,i(A)’s we have

A =‖= (A ∧Ł Jn,0(A)) ∨Ł (A ∧Ł Jn,1(A)) ∨Ł · · · ∨Ł (A ∧Ł Jn,n(A)).
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From our probability axioms it follows that logically equivalent propositions
must receive the same probability, so

Pr(A) =
∑

0≤i≤n

Pr(A ∧Ł Jn,i(A)). (†)

We consider two bets, one on A ∧Ł Jn,k(A) at betting quotient p and
stake S1, the other on Jn,k(A) at betting quotient q with stake S2. The
pay-offs are:

G= k
n

=

(
k

n
− p

)

S1 + ((1− q)S2) when A has truth-value
k

n
,

G6= k
n

= −pS1 − qS2 when A has truth-value other than
k

n
.

Setting S2 = − k
n
S1 gives a pay-off, independent of the truth-value of

A, of
(

qk
n
− p

)

S1, which can be made negative by choice of S1 provided

p 6= qk
n
. On the other hand, for arbitrary S1 and S2, when p = qk

n
the two

pay-offs are

G= k
n

= (1− q)
[
k

n
S1 + S2

]

when A has truth-value
k

n
, and

G6= k
n

= −q
[
k

n
S1 + S2

]

when A has truth-value other than
k

n
.

These cannot both be negative. Hence

Pr(A ∧Ł Jn,k(A)) =
k

n
Pr(Jn,k(A)).

Substituting in (†), we obtain:

Pr(A) =
1

n

∑

0≤i≤n

iPr(Jn,i(A)).

Two comments

Firstly, having been obtained by an independent Dutch Book argument, the
Classical Expectation Thesis may seem to be an additional principle. In fact
it is not; it is derivable from our axioms for probability. To show this we have
to introduce a propositional constant, introduced into Łukasiewicz logic by
Słupecki in order to obtain expressive completeness (Słupecki, 1936).
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In the semantics of (n + 1)-valued Łukasiewicz logic, in which all for-
mulas are assigned values in the set

{
0, 1

n
, 2

n
, . . . , n−1

n
, 1

}
, the propositional

constant t has this interpretation:

under all valuations v, v(t) =
n− 1

n
.

Let t1 be the (n − 2)-fold ∧Ł-conjunction of t with itself. For 1 < k ≤ n,
let tk be the (k − 1)-fold ∨Ł-disjunction of t1 with itself. v(t1) = 1

n
and

v(tk) = k
n
. Since we have

tk ∧Ł t1 |=, 1 ≤ k < n, and

|= tn,

from our probability axioms we obtain:

Pr(tk) = kPr(t1), 1 ≤ k ≤ n, and

Pr(tn) = 1,

hence

Pr(tk) =
k

n
, 1 ≤ k ≤ n.

Using the ti’s we can derive the Classical Expectation Thesis. (I’ll skip the
details here.)
Secondly, the Dutch Book argument for the Classical Expectation Thesis

goes through with any notion of conjunction for which v(A&B) = v(A)
when v(B) = 1 and v(A&B) = 0 when v(B) = 0. Also, the Jn,i(A)’s
being truth-functional, the Classical Expectation Thesis holds good of every
proposition in the semantic framework, not just those expressible using the
Łukasiewicz connectives.

4 The extension to infinitely many truth-values (a sketch)

For any rational number x in the interval [0, 1], there is a formula φ(p) of a
single propositional-variable p, constructed using Łukasiewicz negation and
any one or more of Łukasiewicz conjunction, disjunction, or implication,
such that, under any valuation taking values in [0, 1], v (φ (A/p)) = 0 if
v(A) ≤ x and v (φ (A/p)) > 0 otherwise (McNaughton, 1951).
Employing the Gödel negation,2 then, we have,

2The Gödel negation is, to be sure, not usually taken to be part of the vocabulary
of the Łukasiewicz logics. Semantically, however, it can be defined in the Łukasiewicz
fuzzy/many-valued frameworks as the external negation that maps 0 to 1 and all other
values to 0.
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• for each interval [0, x] with x rational, a formula J[0,x](A) that takes
the value 1 under any valuation v for which v(A) ≤ x and otherwise
takes the value 0;

• for each half-open interval (x, y] with rational endpoints x and y, x <
y, a formula J(x,y](A) that takes the value 1 under a valuation v when
v(A) ∈ (x, y] and otherwise takes the value 0.

Given a strictly increasing, finite sequence x0, x1, . . . , xn−1 of rational
numbers in the open interval (0, 1), consider the family of n+ 1 bets:

• a bet on A at betting quotient q with stake S;

• a bet on J[0,x1](A) at betting quotient p1 with stake S1;

• a bet on J(xi−1,xi](A) at betting quotient pi with stake Si, 1 < i < n;

• a bet on J(xi,1](A) at betting quotient pn with stake Sn.

∑

2≤i≤n

xi−1 Pr(J(xi−1,xi](A)) ≤ Pr(A) ≤

≤ x1 Pr(J[0,x1](A)) +
∑

2≤i≤n

xi Pr(J(xi−1,xi](A)),

where xn = 1. So by taking finer and finer partitions we can more closely
approximate the probability of A from above and below. This may not quite
do to fix Pr(A) exactly. For that we may also need the probabilities of at
most a countable infinity of (two-valued) statements of the form

v(A) ≤ x

where x is an irrational number.3

With these in hand, we then find that

Pr(A) =

∫ 1

0
xdFA(x),

where FA is the ordinary, “classical” distribution function determined by
the probabilities of the J[0,x](A)’s, J(x,y](A)’s and however many v(A) ≤ x’s
with x irrational we have used.
By introducing a countably infinite family of logical constants, we can

derive this classical representation from the previously given principles of
probability together with the principle

3Recall Zadeh’s assumption regarding the P -measureability of “level sets”.
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• for any proposition A logically constrained to take only the values 0
and 1 and for rational values of x in the interval [0, 1], Pr(tx ∧ A) =
xPr(A),

where tx takes the value x under all valuations v.
The really neat feature of infinitely many-valued Łukasiewicz logics is

that this principle is derivable from the basic principles

• 0 ≤ Pr(A) ≤ 1;

• Pr(A) = 1 when |= A;

• Pr(A) = 0 when A |= ;

• Pr(A ∧Ł B) + Pr(A ∨Ł B) = Pr(A) + Pr(B).

5 Conditional probabilities

In the classical setting, a bet on A conditional on B is a bet that goes ahead
if, and only if, B is true and is then won or lost according as to whether
A is true or not. The pay-offs for such a conditional bet with stake S at
betting quotient p are:

• the bettor gains (1− p)S if A and B;

• the bettor loses pS if not-A and B;

• the bettor neither gains nor loses if not-B.

We can summarise this betting scheme like this:

v(B)(v(A) − p)S.

And so, as with ordinary bets, we now know one way to extend the
scheme for conditional bets on classical, two-valued propositions to many-
valued propositions.
A straightforward Dutch Book argument, which again piggy-backs on

the proof in the two-valued case, then tells us that

Pr(A ∧× B) = Pr(A|B)× Pr(B)

where
v(A ∧× B) = v(A) × v(B).

— Allowing for the change of setting, just what Zadeh said.
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You can, if you are so minded, generalize the classical scheme using any
many-valued or fuzzy conjunction that is “classical at the extremes”:

(v(A ∧B)− v(B)p)S.

A Dutch Book argument — in all essentials, the same Dutch Book argument
— will then deliver:

Pr(A ∧B) = Pr(A|B)× Pr(B).

However, Pr(·|B) satisfies the axioms for an absolute probability measure
only when the product conjunction, ∧× is used.4

Peter Milne
Department of Philosophy, University of Stirling
Stirling FK4 9LA, United Kingdom
peter.milne@stir.ac.uk
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Inferentializing Consequence

Jaroslav Peregrin∗

The proof of correctness and completeness of a logical calculus w.r.t. a
given semantics can be read as telling us that the tautologies (or, more gen-
erally, the relation of consequence) specified in a model-theoretic way can
be equally well specified in a proof-theoretic way, by means of the calculus
(as the theorems, resp. the relation of inferability of the calculus). Thus
we know that both for the classical propositional calculus and for the clas-
sical predicate calculus theorems and tautologies represent two sides of the
same coin. We also know that the relation of inference as instituted by any
of the common axiom systems of the classical propositional calculus coin-
cides with the relation of consequence defined in terms of the truth tables;
whereas the situation is a little bit more complicated w.r.t. the classical
predicate calculus (the coincidence occurs if we restrict ourselves to closed
formulas; otherwise ∀xFx is inferable from Fx without being its conse-
quence). And of course we also know cases where a class of tautologies of
a semantic system does not coincide with the class of theorems of any cal-
culus. (The paradigmatic case is the second-order predicate calculus with
standard semantics.)
This may make us consider the problem of “inferentializability”. Which

semantic systems are “inferentializable” in the sense that their tautologies
(their relation of consequence, respectively) coincide with the class of the-
orems (the relation of inferability, respectively) of a calculus? One answer
is ready: it is if and only if the set of tautologies is recursively enumarable.
But this answer is not very informative, indeed saying that the set is re-
cursively enumerable is only reiterating that it conicides with the class of
theorems of a calculus. Moreover, paying due attention to the terms such
as “calculus” and “inference” shows us that it is possible to relate them to
various “levels”, whereby the problem of inferentializability becomes quite
nontrivial.

∗Work on this paper was supported by the grant No. 401/07/0904 of the Czech Science
Foundation.
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1 Consequence

Consequence, as the concept is usually understood, amounts to truth-preser-
vation, i.e., A is a consequence of A1, . . . , An iff the truth of all of A1, . . . , An

brings about the truth of A, i.e., iff any truth valuation mapping all of
A1, . . . , An on 1 maps also A on 1.1 It is obvious that the “any” from the
previous sentence cannot mean “any whatsoever” (of course there does ex-
ist a function mapping all of A1, . . . , An on 1 and A on 0!), it must mean
something like “any admissible”. Hence there must be some concept of ad-
missibility in play: some mappings of sentences of {0, 1} will be admissible,
others not. But, of course, that if we take the sentences to be sentences
of a meaningful language, such a division of valuations is forthcoming: if
A1, . . . , An are Fido is a dog and Every dog is a mammal (hence n = 2), A
is Fido is a mammal, then the valuation mapping the former two sentences
on 1 and the latter one on 0 is not admissible — it is not compatible with
the semantics of English.
Hence we assume that any semantics of any language provides for the

division of the sentences of the language into true and false, thereby di-
viding the space of the mappings of the sentences on {0, 1} into admissible
and inadmissible. (In fact I maintain a much stronger thesis, namely that
any semantics can be reduced to such a division, but I am not going to
argue for this thesis here — I have done so elsewhere, see (Peregrin, 1997).)
Thereby it also establishes the relation of consequence, as the relation of
truth-preservation for all admissible valuations. If we use the sentences
S1, S2, . . . of the language in question to mark columns of the following
table using all possible truth-valuations as its rows, we can look at the
delimitation of the admissible valuations as striking out rows of the table.

S1 S2 S3 S4 · · ·
v1 0 0 0 0 · · ·
v2 1 0 0 0 · · ·
v3 0 1 0 0 · · ·
v4 1 1 0 0 · · ·
v5 0 0 1 0 · · ·
v6 1 0 1 0 · · ·
...

...
...
...
...
. . .

1 See (Peregrin, 2006).
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A more exact articulation of these notions yields the following definition:

Definition 5. A semantic system is an ordered pair 〈S, V 〉, where S is a set
(the elements of which are called sentences) and V ⊆ {0, 1}S . The elements
of {0, 1}S are called valuations (of S). (A valuation will be sometimes
identified with the set of all those elements of S that are mapped on 1 by
it.) The elements of V are called admissible valuations of 〈S, V 〉, the other
valuations (i.e. the elements of {0, 1}S \ V ) are called inadmissible. The
relation of consequence induced by this system is the relation |= defined as
follows

X |= A iff v(A) = 1 for every v ∈ V such that v(B) = 1 for every B ∈ X.

2 Varieties of Inference

Now consider the stipulation of an inference, A1, . . . , An ⊢ A (for some
elements A1, . . . , An, A of S). Such a stipulation can be seen as excluding
certain valuations: namely all those that map A1, . . . , An on 1 and A on 0.
(Thus, for example, the exclusions in the above table might be the result
of stipulating S1 ⊢ S2.) Hence if we call the pair constituted by a finite set
of elements of S and an element of S an inferon, we can say that inferons
exclude valuations and ask which sets of valuations can be demarcated by
means of inferons.

Definition 6. An inferon (over S) is an ordered pair 〈X,A〉 where X is a
finite subset of S and A is an element of S. An inferon is said to exclude
an element v of {0, 1}S iff v(B) = 1 for every B ∈ X and v(A) = 0. An
ordered pair 〈S,⊢〉 such that S is a set and ⊢ is a finite set of inferons
(i.e. a binary relation between finite subsets of S and elements of S) will be
called an inferential structure. An inferential structure is said to determine
a semantic system 〈S, V 〉 iff V is the set of all and only elements of {0, 1}S
not excluded by any element of ⊢. A semantic system is called an inferential
system iff it is determined by an inferential structure.

Now an obvious question is which semantic systems are inferential. But
before we turn our attention to it, we will consider various possible gener-
alizations of the concept of inference. First, let a quasiinferon differ from
an inferon in that its second component is not a single statement, but a
finite set of statements. A quasiinferon will exclude every valuation that
maps every element of its first component on 1 and every element of its
second component on 0. (Of course the concept of quasiinferon defined
in this way is closely connected with the concept of sequent as introduced
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by (Gentzen, 1934) and (Gentzen, 1936).2) Second, let a semiinferon dif-
fer from an inferon in that its first component is not necessarily finite. A
semiquasiinferon will be a quasiinferon with both its first and its second
component not necessarily finite. Third, let a protoinferential structure
be an inferential structure with its second component not necessarily finite
(and think of the concepts of protosemiinferential, protoquasiinferential and
protosemiquasiinferential structure analogously).
In the following definition, we abbreviate the prefixes, which have already

become somewhat monstrous:

Definition 7. An element of Pow(S) × Pow(S) is called an SQI-on over
S. It is called a QI-on if it is an element of FPow(S) × FPow(S) (where
FPow(S) is the set of all finite subsets of S), it is called an SI-on if it is
an element of Pow(S) × S and it is called an I-on if it is an element of
FPow(S)×S.3 The ordered pair 〈S,⊢〉 where ⊢ is a set of SQI-ons (QI-ons,
SI-ons, I-ons) will be called a PSQI-structure (PQI-structure, PSI-structure,
PI-structure). It is called an SQI-structure (QI-structure, SI-structure, I-
structure) iff ⊢ is finite. An SQI-on 〈X,Y 〉 is said to exclude an element v
of {0, 1}S iff v(B) = 1 for every B ∈ X and v(A) = 0 for every A ∈ Y . A
(P)(S)(Q)I-structure 〈S,⊢〉 is said to determine a semantic system 〈S, V 〉 iff
V is the set of all and only elements of {0, 1}S not excluded by any element
of ⊢. A semantic system is called a (P)(S)(Q)I-system iff it is determined
by a (P)(S)(Q)I-structure.

Summarizing the concepts introduced in this definition, we have the fol-
lowing table:

〈S,⊢〉 is a. . . iff ⊢ is a. . . ⊢ thus being a subset of
I-structure a finite set of I-ons FPow(S)× S
QI-structure a finite set of QI-ons FPow(S)× FPow(S)

SI-structure a finite set of SI-ons Seq(S)× S
PI-structure a set of I-ons FPow(S)× S
SQI-structure a finite set of SQI-ons Pow(S)× Pow(S)

PQI-structure a set of QI-ons FPow(S)× FPow(S)

PSI-structure a set of SI-ons Seq(S)× S
PSQI-structure a set of SQI-ons Pow(S)× Pow(S)

2For an exposition of sequent calculus and its relationship to the more straightforwardly
inferential approach as embodied in natural deduction see, e.g., (Negri & Plato, 2001).
3Throughout the whole paper we identify singletons with their respective single elements;
hence we often write simply v instead of {v}.
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Our aim now is to find criteria of the various levels of inferentializability.
Before we state and prove theorems crucial in this respect, we introduce
some more definitions.

3 Criteria of Inferentializability

Definition 8. Let U be a set of valuations of a semantic system 〈S, V 〉
(i.e. a subset of {0, 1}S). T (U) (the set of U -tautologies) will be the set of
all those elements of S which are mapped on 1 by all elements of U ; and
analogously C(U) (the set of U -contradictions) will be the set of all those
elements of S which are mapped on 0 by all elements of U . Let X and Y be
subsets of S. The cluster generated by X and Y , Cl[X,Y ], will be the set
of all the valuations that map all elements of X on 1 and all elements of Y
on 0. Generally, U is a cluster iff it contains (and hence is identical with)
Cl[T (U), C(U)]. A cluster U is called finitary iff both T (U) and C(U) are
finite, it is called inferential iff C(U) is a singleton.

Now it is clear that a semantic system 〈S, V 〉 is a PSQI-system iff {0, 1}S\
V is a union of clusters. (Hence every semantic system is a PSQI-system,
for every single valuation constitutes a cluster.) The reason is that a system
is a PSQI-system if its inadmissible valuations are determined by a set of
SQI-ons and what an SQI-on excludes is a cluster of valuations. If we use
specific kinds of SQI-ons, such as SI-ons, we will have a specific kind of
clusters, like inferential clusters; and if we allow for only a finite number of
SQI-ons, we will have to count with only finite unions. This yields us the
facts summarized in the following table:

〈S, V 〉 is a. . . iff {0, 1}S \ V is a union of. . .
PSQI-system clusters

PSI-system inferential clusters

PQI-system finitary clusters

SQI-system a finite number of clusters

PI-system finitary inferential clusters

SI-system a finite number of inferential clusters

QI-system a finite number of finitary clusters

I-system a finite number of finitary inferential clusters

Theorem 3. A semantic system 〈S, V 〉 is a PSI-system iff V contains
every v ∈ {0, 1}S such that for every A ∈ C(v) there is a v′ ∈ V such that
T (v) ⊆ T (v′) and A ∈ C(v′).
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Proof. A semantic system 〈S, V 〉 is a PSI-system system iff {0, 1}S \ V is
a union of inferential clusters. This is to say that it is a PSI-system iff for
every v ∈ {0, 1}S \ V there is a set X ⊆ T (v) and a sentence A ∈ C(v)
such that no valuation v′ such that X ⊆ T (v′) and A ∈ C(v′) is admissible.
In other words, 〈S, V 〉 is a PSI-system iff for every v 6∈ V there is a set
X ⊆ T (v) and a sentence A ∈ C(v) such that V does not contain any v′

such that X ⊆ T (v′) and A ∈ C(v′). By contraposition, 〈S, V 〉 is a PSI-
system iff the following holds: given a valuation v, if for every set X ⊆ T (v)
and every sentence A ∈ C(v) there is a v′ ∈ V such that X ⊆ T (v′) and
A ∈ C(v′), then v ∈ V . This condition can obviously be simplified to: given
a valuation v, if for every sentence A ∈ C(v) there is a v′ ∈ V such that
T (v) ⊆ T (v′) and A ∈ C(v′), then v ∈ V .

Theorem 4. A semantic system 〈S, V 〉 is a PQI-system iff V contains
every v such that for every finite X ⊆ T (v) and finite Y ⊆ C(v) there is a
v′ ∈ V such that X ⊆ T (v′) and Y ⊆ C(v′).

Proof. A semantic system 〈S, V 〉 is a PQI-system system iff {0, 1}S \V is a
union of finite clusters. This is to say that it is a PQI-system iff for every
v ∈ {0, 1}S \ V there are finite sets X ⊆ T (v) and Y ⊆ C(v) such that no
valuation v′ such that X ⊆ T (v′) and Y ⊆ C(v′) is admissible. In other
words, 〈S, V 〉 is a PQI-system iff for every v 6∈ V there are sets X ⊆ T (v)
and Y ⊆ C(v) such that V does not contain any v′ such that X ⊆ T (v′) and
Y ⊆ C(v′). By contraposition, 〈S, V 〉 is a PQI-system iff the following holds:
given a valuation v, if for every sets X ⊆ T (v) and Y ⊆ C(v) there is a
v′ ∈ V such that X ⊆ T (v′) and Y ⊆ C(v′), then v ∈ V . This condition can
obviously be simplified to: given a valuation v, if for every finite X ⊆ T (v)
and finite Y ⊆ C(v) there is a v′ ∈ V such that X ⊆ T (v′) and Y ⊆ C(v′),
then v ∈ V .

We leave out the proof of the following theorem, as it is straightforwardly
analogous to the proofs of the previous two.

Theorem 5. A semantic system 〈S, V 〉 is a PI-system iff V contains every
v such that for every finite X ⊆ T (v) and every A ∈ C(v) there is a v′ ∈ V
such that X ⊆ T (v′) and A ∈ C(v′).

Hence we have necessary and sufficient conditions for a semantic system
being a PSI-, a PQI-, or a PI-system. Unfortunately, we do not have such
conditions for its being an SQI-, an SI-, a QI-, or an I-system. However, we
are able to formulate at least a useful necessary condition for its being an
SQI-system.
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Theorem 6. A semantic system 〈S, V 〉 is an SQI-system only if V contains
no v such that for every finite X ⊆ T (v) and finite Y ⊆ C(v) there is a
v′ 6∈ V such that X ⊆ T (v′) and Y ⊆ C(v′).

Proof. A semantic system 〈S, V 〉 is a PQI-system iff {0, 1}S \ V is a finite
union of clusters. Hence if it is a PQI-system, there must exist a finite set
I and two collections 〈Xi〉i∈I , 〈Y i〉i∈I of subsets of S so that

{0, 1}S \ V =
⋃

i∈I

Cl[Xi, Y i].

This is the case iff V equals the complement of
⋃

i∈I

Cl[Xi, Y i], hence iff

V =
⋂

i∈I

Cl[Xi, Y i].

But as Cl[Xi, Y i] = {v : Xi ⊆ T (v) and Y i ⊆ C(v)},

Cl[Xi, Y i] = {v : Xi 6⊆ T (v) or Y i 6⊆ C(v)} =

= {v : Xi ∩ C(v) 6= ∅ or Y i ∩ T (v) 6= ∅} =

= {v : Xi ∩ C(v) 6= ∅} ∪ {v : Y i ∩ T (v) 6= ∅} =

=
⋃

x∈Xi

{v : x ∈ C(v)} ∪
⋃

y∈Y i

{v : y ∈ T (v)} =

=
⋃

x∈Xi

Cl[∅, {x}] ∪
⋃

y∈Y i

Cl[{y}, ∅].

Now using the generalized de Morgan’s law saying that

⋂

j∈I

⋃

j∈J

Zj
i =

⋃

f∈F

⋂

j∈I

Zj

f(j)

where F = IJ , we can see that

V =
⋃

f∈F

⋂

j∈f+

Cl[f(j), ∅] ∩
⋂

j∈f−

Cl[∅, f(j)]

where F is the set of all functions mapping every i ∈ I on an element of f(i)
of Xi∪Yi, and f

+, and f−, respectively, are the sets of all those elements of
I that are mapped by f on elements of Xi, and Yi, respectively. It further
follows that

V =
⋃

f∈F

Cl[Xf , Y f ]

where Xf = {f(j) : j ∈ f+} and Y f = {f(j) : j ∈ f−}. As both f+ and f−

are finite, this means that V is a union of finite clusters. It follows that for
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every v ∈ V there are finite sets X ⊆ T (v) and Y ⊆ C(v) such that every
valuation v′ such that X ⊆ T (v′) and Y ⊆ C(v′) is admissible. In other
words, for every v ∈ V there are sets X ⊆ T (v) and Y ⊆ C(v) such that V
contains every v′ such that X ⊆ T (v′) and Y ⊆ C(v′). By contraposition:
given a valuation v, if for every set X ⊆ T (v) and Y ⊆ C(v) there is a
v′ 6∈ V such that X ⊆ T (v′) and Y ⊆ C(v′), then v 6∈ V . This condition can
obviously be simplified to: given a valuation v, if for every finite X ⊆ T (v)
and finite Y ⊆ C(v) there is a v′ 6∈ V such that X ⊆ T (v′) and Y ⊆ C(v′),
then v 6∈ V .

4 A Hierarchy of Semantic Systems

Let us introduce some more definitions.

Definition 9. A semantic system 〈S, V 〉 is called
• saturated iff V contains every v such that for every A ∈ C(v) there is
a v′ ∈ V such that T (v) ⊆ T (v′) and A ∈ C(v′);

• compact iff V contains every v such that for every finite X ⊆ T (v) and
finite Y ⊆ C(v) there is a v′ ∈ V such that X ⊆ T (v′) and Y ⊆ C(v′);

• co-compact iff V contains no v such that for every finite X ⊆ T (v) and
finite Y ⊆ C(v) there is a v′ 6∈ V such that X ⊆ T (v) and Y ⊆ C(v′).

• compactly saturated iff V contains every v such that for every finite
X ⊆ T (v) and every A ∈ C(v), there is a v′ ∈ V such that X ⊆ T (v′)
and A ∈ C(v′).

Given these, we can rephrase the theorems we have proved in the follow-
ing way:

Theorem 7. A semantic system 〈S, V 〉 is
• always a PSQI-system;

• a PSI-system iff it is saturated;

• a PQI-system iff it is compact;

• an SQI-system only if it is co-compact;

• a PI-system iff it is compactly saturated;

Moreover, easy corollaries of the theorems are the following necessary
conditions for a system being an SI-, a QI- and an I-system:

Corollary 2. A semantic system 〈S, V 〉 is
• an SI-system only if it is saturated and co-compact;
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• a QI-system only if it is compact and co-compact;

• an I-system only if it is compactly saturated and co-compact.

The kinds of semantic systems we have introduced can be arranged into
the following diagram, where the arrows indicate containment in the sense
that an arrow leads from a concept to a different one if the extension of the
former includes that of the latter.

I-system [Σ8]

PI-system [Σ5] QI-system [Σ6] SI-system [Σ7]

PQI-system [Σ2] SPI-system [Σ3] SQI-system [Σ4]

SPQI-system = semantic system [Σ1]

Diagram 1

What we are going to show now is that all the inclusions are proper.
The symbols in brackets following each kind term is the name of a semantic
system which will witness the properness. The systems are the following (S
is supposed to be an infinite set):

• Σ1 = 〈S, {v ∈ Pow(S) : T (v) is finite}〉;

• Σ2 = 〈S, {∅}〉;

• Σ3 = 〈S, {v ∈ Pow(S) : C(v) is finite}〉;

• Σ4 = 〈S,Pow(S) \ {S}〉;

• Σ5 = 〈S, {S}〉;

• Σ6 = 〈{A,B}, {{A}, {B}}〉;

• Σ7 = 〈S, {v ∈ Pow(S) : C(v) = A}〉 for a fixed A ∈ S;

• Σ8 = 〈{A,B}, {{A,B}, {B}}〉.

To show that they do fit into the very slots of Diagram 1 where we have
put them, let us first give one more definition:

Definition 10. A valuation is called full if it maps every sentence on 1.
(In other words, the full valuation is S.) A valuation is called empty if it
maps every sentence on 0. (In other words, the empty valuation is ∅.)
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Σ1 is not saturated, for V does not contain the full valuation, f , though
for every A ∈ C(f) there is a v ∈ V such that T (f) ⊆ T (v) and A ∈ C(v).
(As there is no A ∈ C(v), this holds trivially. It follows that no system not
admitting the full valuation is saturated.) Hence it is not a PSI-system.
It is not compact, because V does not contain the full valuation, but for
every finite subset X of T (f) it contains a v′ such that X ⊆ T (v′) (whereas
Y ⊆ C(v′) for every finite subset Y of C(f) holds trivially); hence it is not
a PQI-system. Moreover, it is not co-compact, for V contains the empty
valuation, whereas as V cannot contain any valuation mapping only a finite
number of sentences on 0, there is, for every finite subset Y of S, a v′ 6∈ V
such that Y = C(v′). Hence it is not an SQI-system.

Σ2 is a PQI-system, for it is determined by the infinite set of QI-ons
{〈{A}, ∅〉 : A ∈ S}. However, it is not saturated, for V does not contain the
full valuation, hence it is not a P(S)I-system. Also it is not co-compact, for
V contains the empty valuation, whereas for every finite subset Y of S there
is a v′ 6∈ V such that X ⊆ C(v′) (whereas that Y ⊆ T (v′) for every finite
subset Y of T (f) holds trivially); hence it is not a (S)QI-system.

Σ3 is a PSI-system, for it is determined by the infinite set of SI-ons
{〈X,A〉 : X ⊆ S and X is infinite}. However, it is not compact, because
V does not contain the empty valuation, but for every finite subset Y of
S it contains a v′ such that Y = C(v); hence it is not a P(Q)I-system.
Moreover, it is not co-compact, for V contains the full valuation, whereas
for every finite subset Xof S there is a v′ 6∈ V such that X = T (v′), hence
it is not an S(Q)I-system.

Σ4 is an SQI-system, for it is determined by the SQI-on 〈S, ∅〉. However,
it is not saturated, for V does not contain the full valuation, hence it is
not a (P)SI-system. It is not compact, because V does not contain the
full valuation, but for every finite subset Xof S it contains a v′ such that
X = T (v′); hence it is not a (P)QI-system.

Σ5 is a PI-system for it is determined by the infinite set of I-ons {〈∅, {A}〉 :
A ∈ S}. But it is not co-compact, for V contains the full valuation, whereas
for every finite subset X of S there is a v′ 6∈ V such that X = T (v′), hence
it is not a (S)(Q)I-system.

Σ6 is a QI-system for it is determined by the finite set of QI-ons
{〈∅, {A,B}〉, 〈{A,B}, ∅〉}. But it is not saturated, for the supervaluation
of V is the empty valuation, hence it is not a (P)(S)I-system.

Σ7 is an SI-system for it is determined by the single SI-on 〈S \ {A}, A〉.
But it is not compact, for V contains, for every finite subset Y of S \ {A},
a v′ such that T (v′) = Y and C(v′) = A. Hence it is not a (P)(Q)I-system.

Σ8 is an I-system, for it is determined by the I-on 〈∅, {B}〉.
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5 Consequence revisited

If what we are interested in is the relation of consequence, then our clas-
sificatory hierarchy becomes excessively fine-grained. In particular, we are
going to show that for every (P)(S)QI-system there exists a (P)(S)I-system
with the same relation of consequence. To do this let us define a concept
introduced by (Hardegree, 2006):

Definition 11. Let U be a set of valuations of the class S of sentences.
The supervaluation of U is the valuation such that T (v) = T (U).

The next lemma shows that our Theorem 3 is equivalent to one of Hard-
egree’s results:

Lemma 1. A semantic system 〈S, V 〉 is a (P)(S)QI-system iff V contains
supervaluations of all its subsets.

Proof. This follows directly from the fact that 〈S, V 〉 is a (P)(S)QI-system
iff it is saturated, for it can be easily seen that it is saturated iff V contains
supervaluations of all its subsets.

Lemma 2. Extending admissible valuations of a semantic system by super-
valuations does not change the relation of consequence.

Proof. Let 〈S, V 〉 be a semantic system and |= the relation of consequence
induced by it. Let v be a supervaluation of a subset of V and let |=∗ be the
relation of consequence induced by 〈S, V ∪ {v}〉. Suppose the two relations
do not coincide; then there is a subset X of S and an element A of S so
that X |= A, but not X |=∗ A. This means that it must be the case that
v(B) = 1 for every B ∈ X and v(A) = 0, but that every v′ ∈ V such that
v′(B) = 1 for every B ∈ X is bound to be such that v′(A) = 1. But as v′ is
the supervaluation of an U ⊆ V , elements of U map all elements of X on 1,
whereas at least one of them maps A on 0; which is a contradiction.

This gives us the following reduced version of Diagram 1:

(Q)I-system

P(Q)I-system S(Q)I-system

PS(Q)I-system = semantic system

Diagram 2

Hence from the viewpoint of consequence, we have four types of semantic
systems:
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• Systems that are neither P(Q)I, nor S(Q)I. These are systems of the
kind of Σ1 and Σ3.

• P(Q)I-systems that are not (Q)I-systems. Examples are Σ2 and Σ5.

• S(Q)I-systems that are not (Q)I-systems. Examples are Σ4 and Σ7.

• (Q)I-systems. Systems of the kind of Σ6 and Σ8.

Consequence as induced by the truth tables of classical propositional logic
or by the model theory of the classical first-order predicate logic, of course,
fall into the last category. Indeed any logic that has a strongly sound and
complete axiomatization must trivially belong here. But even among the
semantic systems studied by logicians there are some that fall outside this
range ((Tarski, 1936) made this into a deep point — consequence, according
to him, cannot be in general captured in terms of inferential rules).
From Diagram 2 we can see that there are two ways to go beyond the

boundaries of I-systems: we may either alleviate the requirement of finite-
ness of antecedents of inferences, or alleviate the requirement of finiteness
of the whole relation of inference. The ω-rule, which is often discussed in
connection with the formalization of arithmetic, is an example of the former
way; the axiom scheme of induction, that comprises an infinity of concrete
axioms, is the example of the latter.
For a more specific example, consider the language of Peano arithmetic

with the single admissible valuation determined by the intended interpre-
tation within the standard model (let me call this system true arithmetic,
TA). As it turns out, this system is a PQI-system. Indeed, it can be deter-
mined by the PQI-structure whose relation of inference consists of the I-ons
of the form 〈∅, A〉 for every true sentence A plus the QI-ons of the form
〈{B}, ∅〉 for every false sentence B. (We know that it is not an I-system, as
we know that the truths of TA are not recursively enumerable.) Call the
single admissible valuation of the system t.
If we extend the (single-element) set of admissible valuations of TA by

the full valuation, it becomes saturated (indeed the supervaluation of every
subset of the set of its admissible truth valuations will be admissible: the
supervaluation of the empty set as well as the singleton of the full valuation
is the full valuation, whereas the supervaluation of the two remaining sets is
the valuation t). Hence this system is a PI-system (indeed, it is determined
by the PI-structure the relation of inference of which consists of the I-ons of
the form 〈∅, A〉 for every sentence A true according to t plus the I-ons of the
form 〈{B}, C〉 for every sentence B false according to t, and every sentence
C) but has the same relation of consequence as the previous system.



Inferentializing Consequence 167

6 Further steps

I hope to have shown how we can set up a useful framework for a systematic
confrontation of proof theory and semantics, especially of inference and
consequence; and that I have also indicated that this framework lets us prove
some nontrivial and interesting results. However, it should be added that
to bring results immediately concerning the usual systems of formal logic,
our classificatory hierarchy will have to be made still more fine-grained.
The point is that while we only distinguished between systems that are

determined by structures with a finite number of (S)(Q)I-ons (i.e. (S)(Q)I-
systems) and those where the finiteness requirement is alleviated (the P(S)
(Q)I-systems), we would need to consider systems in between these two
extremes. The usual systems of formal logic can be considered as gener-
alizing over inferential (as opposed to pseudoinferential) structures in two
steps. First, they allow for an infinite number of (S)(Q)I-ons, which are,
however, instances of a finite number of schemata. (This is, of course, pos-
sible only when we, unlike in the present paper, take into account some
structuring of the set of sentences and consequently of the sentences them-
selves — if we consider the sentences as generated from a vocabulary by a
set of rules.) This can be accounted for in terms of parametric SQI-ons, or
p(S)(Q)I-ons. p(S)(Q)I-systems, then, fall in between (S)(Q)I-systems and
P(S)(Q)I-system. Thus for example the semantic system of PA is a p(Q)I-
system, for the infinity of its axioms is the union of instances of a finite
number of axiom schemas. The semantic system of TA is a pSI-system,
for we know that we can have its sound and complete axiomatization if we
extend the axiomatic system with the omega-rule, which is, in our termi-
nology, a pSI-on. Second they allow for infinite sets of (S)(Q)I-ons that are
generated by a finite number of metainferential rules from sets of instances
of finite number of schemata.
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Meaning and Compatibility:

Brandom and Carnap on Propositions

Martin Pleitz

1 Brandom’s and Carnap’s semantics

Robert random in his Locke Lectures1 has developed a new formal seman-
tics that is based entirely on the one primitive notion of the incoherence of
sets of sentences (Brandom, 2008, pp. 117–175). A language, i.e. a set of
atomic sentences, is formally interpreted by an incoherence partition of its
power-set. The incoherence partition must satisfy only one condition that
Brandom calls “persistence”, i.e., all sets containing an incoherent subset
must themselves be incoherent. The incompatibility of two sentences is
then defined as the incoherence of their union. Two sentences are called
incompatibility-equivalent (or I-equivalent for short) if and only if they are
incompatible with the same sets of sentences. In that case the two sentences
are said to be synonymous. Therefore, the proposition expressed by a sen-
tence can be represented by the incompatibility-set of the sentence, i.e., by
the set of sets of sentences that are incompatible with it (Brandom, 2008,
pp. 123ff.). This formal framework is a semantics because the basic notion
of incoherence suffices to give an account of the meaning of sentences.
More than sixty years earlier, Rudolf Carnap had already proposed to

represent propositions as sets of sets of sentences, although in a different way.
Like Brandom, Carnap builds a language from a set of atomic sentences.
To this language are added the connectives of propositional logic.2 Carnap
then defines a state-description as a set such that for each atomic sentence,
either the sentence or its negation is an element of it (Carnap, 1947/1956,

1Brandom describes incompatibility semantics at length in the fifth of his John Locke
Lectures, which he held 2006 in Oxford and 2007 in Prague and that have been published
as (Brandom, 2008). The basic idea is sketched first in (Brandom, 1985), and mentioned
repeatedly in (Brandom, 1994).
2Their meaning is given by the usual truth-tables.
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p. 9). Two sentences are said to be L-equivalent if and only if they are
members of the same state-descriptions. In that case the two sentences are
said to be synonymous. Thus, the proposition expressed by a sentence can
be represented by its range, i.e., by the set of state-descriptions that it is
an element of (Carnap, 1947/1956, pp. 7–32, p. 181).3 Carnap intends his
state-descriptions to “represent Leibniz’ possible worlds or Wittgenstein’s
possible states of affairs” (Carnap, 1947/1956, p. 9). But state-description
semantics differs crucially from the mainstream of possible worlds semantics.
In general, possible worlds are seen as basic objects.4 State-descriptions, by
contrast, are set-theoretical constructions from linguistic entities. Therefore
state-description semantics is a precursor of theories that reduce possible
worlds to maximally compatible sets of sentences.5

The fact that state-descriptions are reductionist possible worlds brings
out a first similarity between Brandom’s and Carnap’s formal semantics:
Both are semantics without the world. Meaning is not modeled as a rela-
tion between language and essentially non-linguistic objects. Rather, both
incompatibility semantics and state-description semantics represent mean-
ing by set-theoretical constructions built from linguistic objects alone.6 It
is the aim of my talk to show that the similarities between Brandom’s and
Carnap’s semantics are more than superficial. I hope this comparison will
shed some light on both theories.

2 Modifying state-description semantics

Before starting the comparison, a final adjustment must be made to Car-
nap’s theory. Carnap cannot achieve his own aims, because his theory does

3 Strictly speaking, this is true only for atomic sentences. For non-atomic sentences, we
have to lay down the recursive definition of what it means for a sentence to hold in (i.e. to
be true at) a state-description.
4On this point, radical modal realists like David Lewis, who holds that possible worlds
are concrete objects (Lewis, 1986, pp. 81ff.), and moderate modal realists like Saul Kripke,
who takes possible worlds to be stipulated, have to agree (Kripke, 1972/1980, pp. 15ff.).
5Reductionism is endorsed by Robert Adams, Alvin Plantinga, Robert Stalnaker, An-
drew Roper, Phillip Bricker and Maxwell Cresswell ((Adams, 1979), (Plantinga, 1974),
(Stalnaker, 1979), (Roper, 1982), (Bricker, 1987), (Cresswell, 2006)). The clearest state-
ment of the theory was perhaps given by one of its opponents: David Lewis describes
reductionism — that he calls “linguistic ersatzism” — from a critical perspective, but in
great detail (Lewis, 1986, pp. 142–165).
6A similarity that is more than superficial concerns modality. Brandom and Carnap share
a global understanding of modality, where there is no equivalent of a Kripkean relation
of accessibility, and necessity conforms to the axioms of S5 (Brandom, 2008, pp. 129ff.,
141ff.), (Carnap, 1947/1956, pp. 10, 174f., 186). For a demonstration that incompatibility
semantics can be modified to accommodate other concepts of necessity (as it turns out,
of B), see (Peregrin, 2007), as well as (Göcke, Pleitz, & von Wulfen, 2008) and (Pleitz &
von Wulfen, 2008).
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not rule out state-descriptions that contain sentences that intuitively are
incompatible. This can be shown to an example taken from Meaning and
Necessity.
Consider the atomic sentences “Scott is human” and “Scott is a rational

animal”. According to Carnap’s definition, there will be a state-description
containing the first and the negation of the second. Therefore the two sen-
tences will not be L-equivalent and hence not synonymous. But they should!
Carnap stipulates the English words “human” and “rational animal” to
mean the same (Carnap, 1947/1956, p. 4f.). And, only a few pages later,
he explicitly states that the predicates “human” and “rational animal” are
coextensional in every state-description (Carnap, 1947/1956, p. 15). This is
not a small technical point. As David Lewis has pointed out, any theory
that reduces possible worlds to sets of sentences must rely on a primitive
modal notion, because the sentences that represent possible worlds must
be coherent in a sense that exceeds mere logical consistency. Lewis gives
the example of “the positive and negative charge of point particles” (Lewis,
1986, p. 154).
As a preliminary solution, let us modify state-description semantics by

ruling out those state-descriptions that contain atomic sentences that intu-
itively are incompatible. This modification will turn out to play a crucial
role in the comparison of state-description semantics to incompatibility se-
mantics (Sections 5–7). Therefore it is important to note that the justifi-
cation of this modification of state-description semantics is independent of
the enterprise of comparing it to incompatibility semantics: The criticism
of Carnap’s text is immanent, and Lewis’s argument is perfectly general.

3 Mutual simulation

With this modification in place (Section 2), the comparison of Brandom’s
and Carnap’s semantics can start. We have seen that, in incompatibility-
semantics, incompatibility-sets explicate7 propositions, and I-equivalence
explicates synonymy. In state-description semantics, ranges explicate propo-
sitions, and L-equivalence explicates synonymy (Section 1). So there are
two questions: What is the relation of the objects representing propositions,
i.e. of incompatibility-sets and ranges? What is the relation of the crite-
ria of synonymy, i.e. of I-equivalence and L-equivalence? I will answer the
first question with an informal recipe for transforming incompatibility-sets
into ranges and vice versa and the second with a theorem which says that
I-equivalence and L-equivalence are coextensional.
Both Brandom and Carnap represent propositions by sets of sets of sen-

tences. But, at least superficially, ranges and incompatibility-sets differ.

7For this use of “explicate”, cf. (Peregrin, 2007, p. 13).
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Intuitively, the range of a sentence will contain only sets of sentences com-
patible with it, while the incompatibility-set of a sentence will contain only
incompatible sets of sentences. But nevertheless, we can move back and
forth freely between incompatibility-sets and ranges. The incompatibility-
set of a sentence can be represented by its complement, i.e. the compati-
bility-set of the sentence. The compatibility-set in turn can be stratified
into a bundle of maximally coherent sets of sentences containing the sen-
tence, which is the same as the range of the sentence. (Stratification is the
procedure of taking out of the compatibility-set all sets of sentences con-
tained in other sets of sentences of the compatibility-set.) To transform a
range into an incompatibility-set, we just have to retrace those steps. This
recipe for the transformation of incompatibility-sets and ranges is only in-
formal, because the compared concepts stem from different theories. As
yet, incompatibility-sets are defined only in incompatibility semantics and
ranges are defined only in state-description semantics.
For the same reason, the theorem of coextensionality can not yet be

stated or proved in either semantic theory.8 We first have to define surro-
gates of the Carnapian concepts in Brandom’s semantics and surrogates of
the Brandomian concepts in Carnap’s semantics (Appendices A & B).
In Brandom’s incompatibility semantics, state-descriptions∗ can be de-

fined as maximally coherent sets of sentences.9 This gives us a definition of
L-equivalence∗ as membership in the same maximally coherent sets. The
theorem of coextensionality can now be stated and proved in incompati-
bility semantics. It says that two sentences are L-equivalent∗ just in case
they are I-equivalent, i.e., that two sentences are included in the same max-
imally coherent sets just in case they are incompatible with the same sets
of sentences (Appendix A). This has already been shown in a similar way
by Jaroslav Peregrin, in his Comments on Brandom’s Fifth Locke Lecture
(Peregrin, 2007, p. 17f.).
In Carnap’s state-description semantics, we can define incoherence∗ and

incompatibility∗ on the basis of membership in state-descriptions. A pair
of sentences is defined as incompatible∗10 if and only if there is no state-
description that contains both. (This concept of incompatibility∗ can al-
ready be found under the name of “L-exclusiveness” in Carnap’s 1942 In-

8As yet, the relation of I-equivalence is defined only in incompatibility semantics and the
relation of L-equivalence only in state-description semantics.
9An asterisk (∗) indicates a notion that is defined in a foreign setting. — State-de-
scriptions can safely be treated as maximally coherent sets because of the exclusion of
state-descriptions that contain incompatible sentences (Section 2).
10This formal notion of incompatibility∗ in modified state-description semantics is linked
to our intuitive notion of compatibility, because we have used the intuitive notion of
compatibility to rule out some of the original state-descriptions. In unmodified state-
description semantics, the definition of compatibility∗ entails that any two atomic sen-
tences are compatible∗.
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troduction to Semantics (Carnap, 1942/1961, pp. 70, 94).) On the basis
of the defined Brandomian concepts, it is possible to state and prove the
theorem of coextensionality in state-description semantics (Appendix B).
In sum, it can be proved both in incompatibility semantics and in state-

description semantics that two sentences are L-equivalent just in case they
are I-equivalent.

4 Towards a genuine comparison

It is important to see that this does not show that Brandom’s and Carnap’s
semantics are equivalent simpliciter. The results so far are that in incompat-
ibility semantics, I-equivalence and a defined notion of L-equivalence∗ are
coextensional and that in state-description semantics, L-equivalence and a
defined notion of I-equivalence∗ are coextensional. Why is this not enough?
Speaking metaphorically, for a comparison to be genuine it must be con-
ducted from the outside of both semantic theories. Internal comparison is
always in danger of working with poor substitutes.
As both theories try to give formal models of meaning, I suggest that the

common ground for a genuine comparison is a language that is intuitively
interpreted. The intuitive interpretation of a language is given by a transla-
tion of its terms into (a fragment of) natural language.11 We will therefore
have to work with particular examples of languages. Only if incompatibil-
ity semantics and state-description semantics assign the same relations of
synonymy for every intuitively interpreted language, will it be appropriate
to say that the two semantic theories are equivalent simpliciter.
There are three preconditions for a fair comparison of what incompatibil-

ity semantics and state-description semantics make of a particular intuitively
interpreted language. Firstly, both sides should have shared intuitions about
the relations between basic modal concepts.12 Secondly, they should have

11 “Interpretation” is an umbrella term for any procedure that associates meaning with
expressions of a language. Here, in the context of formal languages, we can distinguish
the following senses of “interpretation”:

1. Interpretation (of the expressions of any formal language) by translation into the
natural language we use,

2. interpretation (of the sentence letters of propositional logic) by truth tables,

3. interpretation (of the expressions of a predicate logical language) by ranges of
state-descriptions, i.e. interpretation in state-description semantics, and

4. interpretation (of sentence letters) by an incoherence partition, i.e. interpretation
in incompatibility semantics.

While 2, 3 and 4 are themselves part of formal theories, 1 makes use of our language, and
hence can be called “intuitive” or “pre-theoretical” interpretation.
12For the pre-theoretical concepts of necessity, compatibility and a possible world, there
should be agreement about principles like the following: A sentence is necessary if and
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shared intuitions about modality in particular cases, as well.13 Thirdly, we
will need a shared formal framework, in the following sense: The intuitive
interpretation of a particular language must, in each theory, uniquely de-
termine a formal interpretation of the language. For Brandom, the formal
interpretation of a language is given by its incoherence partition, and for
Carnap, by the set of state-descriptions.14

5 Filters on state-description tables

To see how an incoherence partition relates to a set of state-descriptions,
let us take another look at state-description semantics in its original form.
This will provide a helpful contrast to understand formal interpretation in
modified state-description semantics.
According to Carnap’s original definition, a state-description is a set

of sentences that, for every atomic sentence, contains either the sentence
or its negation. The idea behind this definition goes back to what Lud-
wig Wittgenstein wrote about truth-tables in the Tractatus. He states
that each row of a truth-table represents a possible state of affairs, and
together they represent all possibilities (e.g., Tractatus, 4.2 & 4.3). The
analogy with truth-tables provides a systematic technique for giving a com-
plete list of state-descriptions of a given language, which we may call a
“state-description table”. How must a state-description table be changed
to accommodate modified state-description semantics? The modification in-
troduced into Carnap’s original framework rules out those state-descriptions
containing intuitively incompatible sentences. This amounts to crossing out
rows in the truth-table-like list of all potential state-descriptions. Let us
call a list of all rows that are crossed out a “filter on a state-description
table”.15

only if it is true in every possible world. Two sentences are compatible if and only if there
is a possible world where both are true. A set of sentences represents a possible world if
and only if it is maximally compatible. — In the context of the comparison of Brandom’s
and Carnap’s semantics, it is important to realize that the justification of these principles
rests in neither theory, but in our shared intuitions about modality in general.
13E.g., the historical Carnap might well disagree with Brandom whether it really is im-
possible that a blackberry be red and ripe (cf. (Brandom, 2008, p. 123). As we want
to compare semantic theories, not particular opinions about modality, we will have to
abstract away from such disagreements.
14We should understand our intuitions about a particular language in terms of an in-
tuitive notion of compatibility. Intuitive compatibility naturally leads to an incoherence
partition and, at least according to the modification of Carnap’s framework (Section 2),
it determines what state-descriptions there are.
15This notion seems to be exactly the same as what Peregrin calls “inadmissible valua-
tions”, cf. Jaroslav Peregrin, “Inferentializing semantics and consequence”, talk given on
June 17, 2008, at Logica 2008 in Hejnice.
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The method of filters on state-description tables captures the formal in-
terpretation of a language as given by modified state-description semantics.
So, how does this relate to formal interpretation in incompatibility seman-
tics, i.e. to an incoherence partition? As an incoherence partition obviously
puts specific restrictions on the admissible distributions of truth-values over
the atomic sentences, it uniquely determines a filter on the set of potential
state-descriptions. But does a filter uniquely determine an incoherence par-
tition? The answer to this question is not obvious, because an incoherence
partition determines the coherence of every set of sentences, while the fil-
ter concerns only sets of maximal length.16 But if according to the filter a
(potential) state-description is coherent, then by persistence all its subsets
are coherent, too. In particular, all subsets consisting of unnegated atomic
sentences will be coherent.17 Therefore a filter gives us all coherent sets of
atomic sentences and thus uniquely determines an incoherence partition.
So we have found a genuine similarity of incompatibility semantics and

modified state-description semantics: From an intuitive interpretation of
a particular language, we reach an incoherence partition in Brandom’s se-
mantics and a filter on (potential) state-descriptions in Carnap’s modified
semantics. As there is a bijection between incoherence partitions and filters,
there is a genuine equivalence between both kinds of formal interpretation.

6 Atomic sentences

Nonetheless, the equivalence of incoherence partitions and filters on state-
descriptions hinges on shared intuitions about the concept of compatibility.
Here there are contrary tendencies in Brandomian and Carnapian semantics.
This is obvious in the example of a simple language where all sets of

sentences are said to be intuitively compatible. At least prima facie, Bran-
dom and Carnap will make entirely different sense of this language. Car-
nap will understand compatibility as logical independence and accordingly
assign the maximal number of different state-descriptions. Consequently,
there will be different ranges for all atomic sentences; no two atomic sen-
tences are synonymous. Brandom, by contrast, can make not much sense
of this language, because in incompatibility semantics, the coherence of all
sentences trivializes a language: All atomic sentences will have the same
incompatibility-set, namely the empty set. So all atomic sentences will be

16What is more, unlike the sets dealt with by an incoherence partition, most state-
descriptions contain negated sentences.
17Brandom has shown that the addition of the propositional connectives to incompat-
ibility semantics is conservative (Brandom, 2008, p. 127). We therefore do not need to
compute the incompatibility-sets of conjunctions and negations to answer the question
whether a filter uniquely determines an incoherence partition.
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I-equivalent and hence synonymous.18 Why are Brandom and Carnap led
to so different results?
To clarify this issue, let us take another historical step backwards, to

what Wittgenstein says about elementary sentences (Elementarsätze) in
the Tractatus. Apart from their syntactical atomicity, Wittgenstein’s ele-
mentary sentences have the following properties:

Property of Base: Any distribution of truth-values over all elemen-
tary sentences fixes the truth values of all sentences of the language.
(Tractatus, 4.51, 5.3)

Wittgenstein’s elementary sentences are logically independent in the
sense that they have the following two properties:

Property of No Entailment: No elementary sentence is logically en-
tailed by any other elementary sentence. (Tractatus, 5.134)

Property of Global Compatibility: No two elementary sentences are
logically incompatible. (Tractatus, 4.211)

We can ask of every formal language whether its atomic sentences have
the properties of Base, of No Entailment and of Global Compatibility. In the
case of propositional logic, all three questions must of course be answered
positively (that’s why the method of truth-tables works). The differences
of the three semantic theories in discussion can now be expressed in the
following way:
The property of Base does not help to distinguish between the theories.

In all three systems, sentences built only with the help of propositional
logic are based on the atomic sentences, while sentences containing quan-
tifiers or modal operators are not.19 But the properties of No Entailment
and Global Compatibility provide distinctive criteria: According to orig-
inal state-description semantics, atomic sentences have both the property

18The example of the simple language L = {p, q, r} where the set {p, q, r} is coherent,
illustrates that the notions of range∗ and L-equivalence∗ as defined in incompatibility
semantics in some cases are poor substitutes for the notions of range and L-equivalence
of state-description semantics (Section 4). In L, there will be only one state-description∗,
i.e. only one maximally coherent set, namely {p, q, r}, and accordingly only one range∗,
namely {{p, q, r}}, Consequently, p, q and r are L-equivalent∗. So I-equivalence and L-
equivalence∗ are indeed coextensional (Section 3). But all the same, the example of the
language of three compatible sentences intuitively contradicts the equivalence of incom-
patibility semantics and (even modified) state-description semantics, because to the same
intuitively interpreted language Carnap would assign eight different state-descriptions and
three different ranges.
19The property of Base is lost in predicate logic (Peregrin, 1995, ch. 5). In modal proposi-
tional logic, the property of Base is lost, as well. The truth-values of all atomic sentences
do not in general determine the truth-value of sentences of the form “necessarily α”,
because the modal operators are not truth-functional.
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of No Entailment and of Global Compatibility.20 According to modified
state-description semantics, atomic sentences need not have the property of
Global Compatibility (Section 2). And according to incompatibility seman-
tics, atomic sentences need neither have the property of Global Compatibil-
ity nor the property of No Entailment. Thus the difference between modified
state-description semantics and incompatibility semantics that emerged in
the example of the simple language hinges on the property of No Entail-
ment.21

But even this last difference could be smoothed out if state-description
semantics was fully modified by giving up the property of No Entailment, as
well. I see the following reason to do this. We allowed atomic sentences to
be incompatible because we wanted to exclude state-descriptions containing
particles bearing negative and positive charge (Section 2). But for a similar
reason we may want to exclude state-descriptions containing whales that
are not mammals (and the like). This amounts to restricting the class of
state-descriptions further, to respect not only intuitive incompatibilities,
but intuitive entailments, as well.

7 Holistic negation and the simulation of logical independence

Nonetheless it may seem a high price to give up all kinds of logical inde-
pendence between atomic sentences. So let us turn again to incompatibility
semantics. Why does Brandom accept the very low degree of logical inde-
pendence? I see a reason that concerns the holistic character of Brandom’s
semantics and can be explained in the special case of negation.
To illustrate the holistic character of negation in incompatibility seman-

tics let us return to the simple language of three compatible sentences (Sec-
tion 6), that may be translated as “Carnap is a philosopher”, “Scott is
a philosopher” and “Brandom is a philosopher”. In the simple language,
the three sentences are valid and hence, their negations are incoherent. In
other words, we cannot coherently say that Carnap is not a philosopher.
Let us now enlarge the simple language by adding the sentences “Carnap
is a florist”, “Scott is a florist” and “Brandom is a florist”. Let us fur-
thermore stipulate (somewhat counterfactually) that it is incompatible to
be a philosopher and a florist. Now we have reached a different language

20Carnap’s original definition is thus in full agreement with Wittgenstein’s ideas about el-
ementary sentences. This is not surprising, as his state-description semantics was inspired
by Wittgenstein’s ideas about logical possibilities.
21 In incompatibility semantics there are not only incompatibilities between atomic sen-
tences, but, according to the definition of incompatibility-entailment, there may be re-
lations of entailment between atomic sentences. In modified state-description semantics
there may be incompatible atomic sentences, but at least prima facie this is no reason to
assume that there are entailments between atomic sentences.
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where there are six different incompatibility-sets for the six atomic sentences
and their negations are coherent. In other words, only the addition to the
language of an incompatible sentence like “Carnap is a florist” makes the
negation of “Carnap is a philosopher” coherently expressible. This is an
example of the holistic character of negation as defined by Brandom: The
meaning of non-p depends on what may be said that is incompatible with p.
Another thing we now have achieved is that, in the six-sentence language,

the original three sentences are logically independent of each other. From
our example we can thus read off a general recipe for simulating logically
independent atomic sentences in incompatibility semantics. We just have to
start with an even number of atomic sentences, and lay down that each con-
secutive pair of sentences is incompatible, but the set of all even-numbered
sentences is coherent.22 Then all even-numbered sentences will be logically
independent. So, though in incompatibility semantics there is no language
where all atomic sentences are logically independent, there are languages
where half of them are. In this case, we can also simulate state-descriptions
that satisfy Carnap’s original definition. The maximally coherent sets will
be I-equivalent to those sets of sentences that, for each one of the logically
independent sentences, contain either the sentence or its negation.
The possibility of simulating logically independent sentences and original

state-descriptions helps to bring out the important difference between in-
compatibility semantics and original state-description semantics: Brandom
can make sense of a lot more languages than Carnap originally could. So,
to give up the logical independence of atomic sentences broadens the scope
of formal semantics.

8 The similarity of Brandom’s and Carnap’s semantics

In sum, there are deep similarities between Brandom’s incompatibility se-
mantics and Carnap’s modified state-description semantics. Not only does
the theorem of coextensionality hold in both theories (Section 3), but for ev-
ery intuitively interpreted language, we can reach equivalent formal interpre-
tations: an incoherence partition or a filter on state-descriptions (Section 5).
This equivalence holds if state-description semantics is fully modified, i.e., if
it abandons the requirement that there are no entailments between atomic
sentences (Section 6). And there are good reasons to do this (Sections 6 & 7).
In order to be able to spell out the result of my comparison in the form

of a slogan, let me introduce the concept of a minimally incoherent set. Re-
member that a maximally coherent set is a coherent set such that, for every
sentence that is not a member of it, the set plus that sentence is incoherent.
A minimally incoherent set is the mirror-image of this, because it is defined

22The set of all queer-numbered sentences must of course be coherent, as well.
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as an incoherent set such that, for every sentence that is a member of it,
the set minus that sentence is coherent. Because of persistence, a com-
plete list of minimally incoherent sets is a non-redundant way to specify all
incoherent sets — that is: an incoherence partition.
With the help of this concept I can sum up my result in the following way:

When we formally interpret a language, it is one and the same thing whether
we give a complete list of all maximally coherent sets or a complete list of
all minimally incoherent sets. Thus, Brandom’s incompatibility semantics
amounts to the same as the reductionist version of possible worlds semantics
turned inside-out.

Martin Pleitz
Department of Philosophy, University of Münster
Domplatz 23, D–48143 Münster, Germany
martinpleitz@web.de

A The theorem of coextensionality in incompatibility semantics

Definition 12. A set S of sentences of L is called a state-description∗ iff S
is maximally coherent, i.e., iff for every sentence α, either α is a member of
S or α is incompatible with S.
Two sentences α and β called L-equivalent∗ iff they are included in the

same maximally coherent sets.

First Theorem of Coextensionality. The sentences α and β are L-equi-
valent∗ iff α and β are I-equivalent.

Proof. “⇐”: Let α and β be I-equivalent. Then, by the definition of I-
equivalence, they are incompatible with the same sets of sentences (i.e.
Inc(α) = Inc(β)). But then they are compatible with the same sentences.
They therefore are contained in the same maximally compatible sets of
sentences, i.e., in the same state-descriptions∗ and consequently are L-
equivalent∗.
“⇒”: Let α and β be not I-equivalent. Then there is a set X such that
X∪{α} is coherent while X∪{β} is incoherent. As for every compatible set
of sentences there is a maximally compatible set of sentences that contains
it, there is a state-description∗ S such that X ∪ {α} ⊆ S, and therefore
α ∈ S. As S contains X, it cannot include β, because the incoherence of
X ∪ {β} would by persistence transfer to S. Therefore β 6∈ S. As α ∈ S
and β 6∈ S, α and β are not L-equivalent∗.23

23For a similar proof, cf. (Peregrin, 2007, p. 17f.).
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B The theorem of coextensionality in state-description
semantics

Definition 13. A set of sentences is incoherent∗ iff there is no state-de-
scription that it is a subset of (note that incoherence∗ is persistent). A pair
of sentences is incompatible∗ iff there is no state-description that contains
both.
Two sentences α and β are I-equivalent∗ iff α and β are incompatible∗

with the same sets of sentences.

Second Theorem of Coextensionality. The sentences α and β are I-
equivalent∗ iff they are L-equivalent.

Proof. “⇐”: Let α and β be L-equivalent. Then they are elements of
the same state-descriptions. As compatibility∗ is defined by recourse to
membership in state-descriptions, α and β therefore are compatible∗ with
the same sets of sentences. Hence they are incompatible∗ with the same
sets of sentences. So α and β are I-equivalent∗.
“⇒”: Let α and β be not L-equivalent. Then there is a state-description

D such that α belongs to D while β does not belong to D. (Or vice versa.
For reasons of symmetry it suffices to deal with one case.) Now let δ be the
conjunction that completely describes D. Then, according to the definition
of compatibility∗, α and δ are compatible∗ while β and δ are incompatible∗.
Consequently, α and β are not I-equivalent∗.

References

Adams, R. M. (1979). Theories of actuality. Ithaca & London: Cornell University
Press.

Brandom, R. (1985). Varieties of understanding. In N. Rescher (Ed.), Reason
and rationality in natural science. Lanham: University Press of America.

Brandom, R. (1994). Making it explicit. Cambridge, MA–London: Harvard
University Press.

Brandom, R. (2008). Between saying and doing: Towards an analytic pragmatism.
Oxford–New York: Oxford University Press.

Bricker, P. (1987). Reducing possible worlds to language. Philosophical Studies ,
52 , 331–355.

Carnap, R. (1942/1961). Introduction to semantics. Cambridge, MA: Harvard
University Press.

Carnap, R. (1947/1956). Meaning and necessity. Chicago: The University of
Chicago Press.



Meaning and Compatibility: Brandom and Carnap on Propositions 181

Cresswell, M. J. (2006). From modal discourse to possible worlds. Studia Logica,
82 , 307–327.
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Inference and Knowledge

Dag Prawitz∗

We sometimes acquire new knowledge by making inferences. This fact may
be seen as so obvious that it sounds strange to put as a problem how and why
we get knowledge in that way. Nevertheless, there is no standard account
of the epistemic significance of valid inferences.
For this discussion, I shall assume that a person’s knowledge takes the

form of a judgement that she has grounds for – an assumption related to the
idea that a person knows that p, only if she has good grounds for holding
the proposition p to be true. The question how inferences give knowledge
may then be put: how may one get in possession of grounds for judgements
by making inferences? One would expect that there is an easy answer to
this question by just referring to how the concepts involved are understood.
But, as I shall argue, there is little hope of answering this question when the
notion of valid inference is understood in the traditional way. To account
for the epistemic significance of valid inferences, we seem to need another
approach to what it is for an inference to be valid and what it is to make
an inference. I shall describe one such approach.
Given a valid argument or a valid inference from a judgement A to a

judgement B, it may be possible for an agent who is already in possession
of a ground for A to use this inference to get a ground for B, too. But
the agent is not ensured a ground for B, just because of the inference from
A to B being valid and the agent being in possession of a ground for A.
The agent may simply be ignorant of the existence of this valid inference,
in which case its mere existence does not make her justified in making the
judgement B. A question that has to be answered is therefore what relation
the agent has to have to the inference to make her justified in making the
judgement B.

∗Many of the ideas presented here were worked out while I was a fellow at the Institute
of Advanced Studies at Università di Bologna in the spring of 2007 and were presented
in lectures given at the Philosophy Department of Università di Bologna.
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I shall restrict myself here to deductive inferences and conclusive grounds,
and when speaking of “inference” and “ground”, I shall always mean de-
ductive inference and conclusive ground.

1 The problem

The question under what condition an agent, call her P , gets a ground
for the conclusion of a valid inference can be formulated more explicitly as
follows, where, for brevity, I restrict myself to the case when there is only
one premiss:
Given that

there is a valid inference J from a judgement A to a judgement B, (a)

and that
the agent P has a ground for A, (b)

what further condition has to be satisfied in order for it to be the case that

P has a ground for B? (d)

The problem is thus to state a further condition (c) such that (a)–(c)
imply (d). Obviously, as already remarked, (a) and (b) alone do not imply
(d). Hence, we need to specify a condition (c), in other words a relation
between an agent P and an inference J , which describes how the agent
arrives at a ground for the conclusion of J .

2 A first attempt to find a condition (c)

Since the mere existence of a valid inference J to B from a judgement A,
for which the agent has a ground, is not sufficient to give her a ground for
B, one may think1 that the extra condition that has to be satisfied is that

the agent P knows that the inference J from A to B is valid (ck)

(the subscript k for ‘knowing’).
But clearly we do not normally establish the validity of an inference

before we use it. If it were a necessary condition always to do so, a regress
would result. The argument used to establish the validity would need some
inferences, and if the validity of them had again to be established to give
the argument any force, there would be a need of yet a further argument
and so on. Unless there were some inferences whose validity could be known
without any argument, we would be involved in an endless regress of trying

1This seems to be taken for granted by, e.g., John (Etchemendy, 1990, p. 93).
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to establish the validity of inferences before any could be used to get a
ground for its conclusion, and hence we would never be able to acquire
knowledge by inferences. At least in case the validity of an inference is
defined in a model-theoretical way, analogously to how logical consequence
is defined, it cannot be maintained that knowledge of validity is immediate
and does not require an argument to be known.
I want to remark in passing that the regress noted above is different from

the well-known Bolzano–Lewis regress.2 This latter regress cast doubts not
only on the necessity of the condition (ck) but even on whether the condition
is sufficient to guarantee the agent a ground for the conclusion. Why should
we think (ck) to be sufficient? Presumably because having a ground for the
judgement A and hence knowing that the proposition occurring in A (i.e.,
the one affirmed by A) is true and knowing that the inference from A to
B is valid and hence that it is truth preserving (in the sense that if the
proposition occurring in A is true then so is the proposition occurring in
B), the agent can infer B by simply applying modus ponens. This gives her
a ground for B, one may think. If so, the reason for saying that the agent
has a ground for B, when she knows the inference to be valid, seems to be
that there is another inference than the original one from A to B, namely,
an inference from two premisses, one of which is the agent’s knowledge of
the validity of the original inference. It is because of this new inference that
the agent is claimed to get a ground for B. But by the same reasoning,
what really guarantees the agent to have a ground for B is her knowledge of
the validity of this new inference. In other words, there is a third inference
with three premisses, one of which is the agent’s knowledge of the validity
of this second inference, and so on.
Already from the first regress discussed above we must conclude that (ck)

is not the right condition that we are seeking to describe how we generally
acquire knowledge or grounds by inferences. At least, we must conclude this
if “knows” in (ck) means something like having established by argument.
One may suggest that there is another concept of knowledge that is rele-
vant here, for instance knowledge based on immediate evidence or implicit
knowledge manifested in behaviour, like the implicit knowledge of meaning
that Michael Dummett has called attention to. I do not want to deny that
there may be a notion of validity of inference for which one can clarify such
a concept of knowledge so that (ck) becomes an appropriate condition. As
already said, it would certainly require a departure from what now seems
to be the dominant understanding of the validity of an inference in terms
of truth preservation for all variations of the meaning of the non-logical ex-
pressions involved in the inference. Anyway, lacking a concept of knowledge

2 (Bolzano, 1837) and (Carroll, 1895). I have discussed this regress more thoroughly in
(Prawitz, 2009).
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(and of validity) that makes (ck) appropriate — to develop on would be a
major task — I shall now leave this first attempt to find a condition (c).

3 A second attempt to find a condition (c)

Realizing that (ck) is not the right condition, one may see the proposal of it
as an overreaction to the simple observation first made, viz. that an agent
need to stand in some relation to the inference, if it is to provide her with a
ground for its conclusion. Of course, the mere existence of a valid inference
cannot automatically provide the agent with a ground for the conclusion,
one may say. She has to do something. But she does not need to establish
the validity of the inference. All that is needed is that she actually uses the
inference. Then the validity of the inference does provide the agent with a
ground for the conclusion, given that she already has one for the premiss.
One may thus suggest that the condition sought for should simply be

P makes the inference J, that is, infers B from A. (c)

There is clearly something right in this suggestion. One should distin-
guish between an inference act, and an inference in the sense of an argument
determined by a number of premisses and a conclusion. It is first when an
agent makes an inference, i.e., carries out an inference act, that the ques-
tion arises whether she is justified in making the assertion that occurs as
conclusion of the inference.
But it must then be asked what is meant by making an inference or

by inferring a conclusion B from a premiss A. We usually announce the
result of such an act verbally by simply first making the assertion A, then
saying “hence” or “therefore” B, or, in the reverse order, we first make
the assertion B, and then say “since” or “because” A. An inference act,
looked upon as verbal behaviour, can be seen as a kind of complex speech
act in which we do not only make an assertion but also give a reason for
the assertion in the form of another assertion or some other assertions from
which it is (implicitly or explicitly) claimed to follow.
However, if this is all that is meant by inferring a conclusion from a

premiss, then one cannot expect that conditions (a), (b), and (c) together
with reasonable explications of the notions involved are sufficient to imply
that the person in question has a ground for the conclusion B. To see this,
one may consider a scenario where a person announces an inference in the
way described, say as a step in a proof, but is not able to defend the inference
when it is challenged. Such cases occur actually, and the person may then
have to withdraw the inference, although no counter example may have been
given. If it later turns out that the inference is in fact valid, perhaps by a
long and complicated argument, the person will still not be considered to
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have had a ground for the conclusion at the time when she asserted it, and
the proof that she offered will still be considered to have had a gap at that
time. This would be a situation in which conditions (a), (b) and (c) were
all satisfied, but (d) would not be said to hold.
If the inference from A to B is generally recognized as valid, then, soci-

ologically speaking so to say, an agent who has a ground for A and makes
the assertion B, giving A as her reason, will certainly be considered to have
a ground for her assertion. If instead the inference is not obviously valid
even to experts, the agent is not considered to have obtained a ground for
B because of making the assertion B and giving A as her reason. But we
are of course not satisfied with a sociological description of when an agent is
considered to have a ground (obtained, e.g., by adding as a condition that
the validity of the inference should be generally recognized by experts in
the field).
It thus still remains to state the appropriate condition under which a valid

inference gives an agent a ground for the conclusion of an inference. One may
think that it must be basically right that we get a ground for a judgement
by inferring it form other judgements for which we already have grounds,
and that hence condition (c) is rightly stated as above. But then “to infer”
or “to make an inference” must mean something more than just stating a
conclusion and giving premisses as reasons. The basic intuition is, I think,
that to infer is to “see” that the proposition occurring in the conclusion must
be true given that the propositions occurring in the premisses are true, and
the problem is how to get a grip of this metaphoric use of “see”.

4 The nature of the problem

At this point it may be good to pause and consider in more detail the nature
of the problem that I have posed. I have used the term ground in connection
with judgements to have a name on what a person needs to be in possession
of in order that her judgement is to be justified or count as knowledge,
following the Platonic idea that true opinions do not count as knowledge
unless one has grounds for them. The general problem that I have posed is
how inferences may give us such grounds.
As I use the term ground, a person’s judgement is justified or counts as

knowledge when she in possession of a ground for the judgement. Conse-
quently, one does not need to show that one is in possession of a ground for
a judgment in order to be justified in making the judgement, it is enough
that in fact one is in possession of such a ground. Justifications must end
somewhere, as Wittgenstein puts it. And the point where they must end is
exactly when one has got in possession of what counts as a justifications or
a ground; something would be wrongly called ground, if it was not enough
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that one to had got in possession of it, in other words, if there was yet
something to be shown, in order that one’s judgement was to be considered
justified.
Hence, it is not the agent P who has to state an adequate condition

(c) and show that (d) holds, i.e., that she has a ground for B, when the
conditions (a)–(c) are satisfied; as just said, she is justified when she is in
possession of a ground, regardless of what she can show about it. It is we as
philosophers who have to state an adequate condition (c) and then derive
(d) from (a)–(c) to give an account of the epistemic significance of valid
inferences. The point of making inferences is to acquire knowledge, and
philosophy of logic would not be up to its task, if it could not explain how
this comes about. To explain this is to say under what conditions a valid
inference can supply us with grounds.
Since the fact that we acquire knowledge by making inference is such a

basic feature of logic, one should expect the account of this fact to be quite
simple, once we have understood rightly the key concepts involved here, in
particular the notions valid inference, inferring or making an inference, and
ground. When these notions have been explicated appropriately, one should
expect it to be a simple conceptual truth that (a)–(c) imply (d).
What is surprising is that there is no generally accepted account of the

epistemic significance of inferences and that puzzling problems seem to arise
when such an account is attempted. This is a sign that our usual under-
standing of the key concepts involved is faulty.

5 Logical consequence and logically valid inference

Since it is valid inferences that allow epistemic progress, a crucial ingredient
in the account must be to give that notion an adequate meaning. The
concept of valid inference is traditionally connected with that of logical
consequence and with necessary truth-preservation. Often one simply says
that an inference is valid if and only if the conclusion is a logical consequence
of the premisses, which in turn is equated with it being necessarily the
case that the conclusion is true if all premisses are. However, I have been
following Frege in taking the premisses and the conclusion of an act of
inference to be speech acts in which a proposition is judged to be true, hence
taking the premisses and conclusion of an inference to be judgements.3 The
traditional idea of inference as necessarily truth preserving is then better
formulated by saying that an inference is valid if and only it necessarily holds

3 In more recent time, the point that premisses and conclusions are not propositions but
judgements or assertions has especially been emphasized by Per Martin-Löf (Martin-Löf,
1985); see also Göran (Sundholm, 1998). In contrast to Frege and Martin-Löf, however,
I shall also consider the case when the premisses and conclusion are judgements made
under assumptions.
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that when all the propositions affirmed in the premisses are true, then so is
the proposition affirmed in the conclusion.
Since Alfred Tarski’s (1936) revival of Bernard Bolzano’s (1837) defi-

nition of logical consequence, it has been common to interpret the modal
notion of necessity in this context extensionally, saying in effect, as we all
know, that a proposition (or sentence) B is a logical consequence of set a Γ
of propositions (or sentences) if and only if for all variations of the content
of the non-logical notions occurring in B and in the elements of Γ, it is in
fact the case that B is true when all the elements of Γ are.
How does the validity of an inference contribute, together with the other

two conditions (b) and (c), to the agent being in possession of a ground for
the conclusion? This is the crucial question that any proposed notion of
validity has to face. In particular, why should the fact that an inference is
truth-preserving contribute to our getting a ground for the conclusion? As
already noted, an agent’s knowledge that an inference is truth preserving
would contribute to her getting a ground for the conclusion of the inference,
but such knowledge should not presumed, and the fact that it is truth
preserving is irrelevant.
Now, nobody suggests that the validity of an inference is to be defined in

terms of just truth preservation. Following Bolzano and Tarski, the model-
theoretical definition says that an inference is valid if it is truth preserving
regardless of how the contents of non-logical expressions are varied. But
this does not essentially change the situation. Why should the additional
fact that the inference is truth-preserving also when the content of the non-
logical expressions is varied be relevant to question whether the agent can
see that the proposition affirmed in the actual conclusion (where the content
is not varied) to be true? The same can be said of validity defined in terms
of necessary truth preservation, if the necessity is understood ontologically.
Why should the fact that an inference is truth preserving in other possible
worlds help the agent to see that the proposition affirmed in the conclusion
is true in the actual world? It is difficult to see how anything but knowledge
of this fact could be relevant here (and if knowledge is assumed, it is suffi-
cient to know that the truth of the propositions in the premisses materially
implies the truth of the proposition in the conclusion — i.e., no variation
of content is needed). Therefore, there seems to be little hope that one can
find an appropriate condition (c) when validity of inference is defined in the
traditional way.
It is different if the necessity is understood epistemically and this is taken

to mean that the truth of the propositions asserted by the premisses, which
the agent is assumed to know, somehow guarantees that the agent can see
that the proposition asserted in the conclusion is true. Such an epistemic
necessity comes close to Aristotle’s definition of a syllogism as an argument
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where “certain things being laid down something follows of necessity from
them, i.e., because of them without any further term being needed to justify
the conclusion.”4 It is of course right to say that there is an epistemic
tie between premisses and conclusion in a valid inference — some kind of
thought necessity, we could say, thanks to which the conclusion can become
justified. But to say this is not to go much beyond our starting point. It
still remains to say how the justification comes about.
Although the idea of Bolzano and Tarski to vary the content of non-

logical terms does not help us in defining the validity of inference, this idea
is still useful for defining logical consequence and the logical validity of infer-
ence. One important ingredient in our intuitive idea of logical consequence
and logical validity of inference is, I think, that they are topic neutral,
and one natural way to express this is to say that they are invariant under
variations of non-logical notions.
I suggest that we distinguish between logical consequence and deductive

(or analytic) consequence and similarly between an inference being logically
valid and it being only (deductively) valid. Given the latter concept we can
easily define logical validity in the style of Bolzano and Tarski:

An inference J is logically valid, if and only if, for any variation of
the content of the non-logical terms occurring in the premisses and
conclusion of J , the resulting inference is valid.

The variation of content may be produced by making substitutions for the
non-logical terms in the manner of Bolzano or by considering assignments
of values to them in the manner of Tarski; we do not need to go into these
technical details here.
This definition makes justice to the idea that whether an inference is logi-

cally valid is independent of the meaning of the non-logical terms. However,
the logical validity of an inference is now not reduced to truth preservation
or to the truth of a generalized material implication but to the validity of
an inference under variations of the contents of non-logical terms.
Some inferences are logically valid, in addition to being deductively valid,

and this is an interesting feature of them, but it is not a feature on which the
conclusiveness of the inference hinges. It thus remains to analyse deductive
validity and bring out how such an inference may deliver a ground for its
conclusion.

6 Grounds

Rational judgements and sincere assertions are supposed to be made on
good grounds. It is not that an assertion is usually accompanied by the

4 See (Ross, 1949, p. 287).
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statement of a ground for it; in other words, the speaker often keeps her
ground for herself. But if the assertion is challenged, the speaker is expected
to be able to state a ground for it. To have a ground is thus to be in a state
of mind that can manifest itself verbally.
I am here interested in grounds that are obtained by making inferences;

all grounds can of course not be obtained in this way, and I shall soon return
to some examples. When an assertion is justified by way of an inference, it is
common to indicate this by simply stating the inference in the way discussed
above, and the premisses of the inferences are then often called the ground
for the assertion. This way of speaking may be acceptable in an everyday
context, but it conceals the problem that we are dealing with, which is
probably one reason why the problem has been so neglected. It makes it
seem as if one automatically has a ground for a conclusion by just stating an
inference that in fact happens to be valid — in effect, it seems as one may
get a ground by simply stating that one has one. We have discussed above
(Section 3) why a ground for a conclusion is not forthcoming by “inferring”
it in this superficial sense.
But there are also other reasons why it is not a good terminology to

use the term “ground” for the premisses of an inference. The premisses are
judgements or assertions affirming propositions, and the fact that one has
judged or asserted them as true cannot constitute a ground for the con-
clusion, nor can the truth of the propositions affirmed constitute such a
ground; at least not in the sense of something that an agent is in posses-
sion of, thereby becoming justified in making the assertion expressed in the
conclusion. It is rather the fact, if it is a fact, that the agent has grounds
for the premisses that is relevant for her having a ground for the assertion
made in the conclusion. But the grounds for the premisses are grounds for
them, not for the conclusion. The question that I have posed is therefore
put in the form: given the grounds for the premisses, how does one get from
them a ground for the conclusion?
We are used to meet challenges of an inference by breaking it down into

simpler steps, and when one succeeds to replace the inference by a chain of
sufficiently simple inferences there is in practice no more challenges. But
the philosophically interesting question is how one can meet a challenge of
a simple inference that is not possible to break down into simpler steps. It
is tempting to fall back at that point on what our expressions mean or in
other words on what propositions it is that we affirm to be true. However,
to my mind, it would be dubious to say of all these inferences that we want
to defend but cannot break down into simpler inferences that their validity
is just constitutive for the meaning of the sentences involved.5 The line that

5 In some previous works (e.g., (Prawitz, 1977, 1973); cf also footnote 6) I have identified
a ground for a judgement with a proof of the judgement, or I have spoken of grounds for
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I shall take is instead roughly that the meaning of a sentence is determined
by what counts as a ground for the judgement expressed by the sentence.
Or expressed less linguistically: it is constitutive for a proposition what can
serve as a ground for judging the proposition to be true. From this point
of view I shall specify for each compound form of proposition expressible
in first order languages what constitutes a ground for an affirmation of a
proposition of that form. If one does not like this line of approach, one may
anyway agree with my specification of what constitutes a ground for various
judgements, which is what matters here.
For instance, a conjunction p&q will here be understood as a proposition

such that a ground for judging it to be true is formed by bringing together
two grounds for affirming the two propositions p and q. We may put the
name conjunction grounding, abbreviated &G, on this operation of bringing
together two such grounds so as to get a ground for affirming a conjunction.
If we do not want to take this view of conjunctions, we may still agree for
other reasons that there is an operation &G such that if β is a ground for
affirming p and γ is a ground for affirming q, then &G(β, γ) is a ground
for affirming p&q. Similarly, we may take it as a further constitutive fact
about conjunction that conversely any ground for judging it to be true is
formed by the operation of conjunction grounding or just agree to that for
other reasons. What matters here is that there is such an operation &G
such that something is a ground for judging p&q to be true if and only if it
can be formed by applying &G to two grounds for judging p to be true and
judging q to be true, respectively.
I have spoken primarily of grounds for judgements or assertions. But

for brevity, we may also speak derivatively of a ground for a proposition p
meaning a ground for the judgement or assertion that p is true. We can
thus state the equivalence

α is a ground for the conjunction p&q if and only if α = &G(β, γ)

for some β and γ such β is a ground for p and γ is a ground for q.

Inferences are made not only from premisses that have been established as
holding but also from assumptions and premisses that are established under
assumptions. To cover such cases I shall introduce what I shall call open or
unsaturated grounds besides the grounds that we have talked about so far
and that I shall call closed grounds. Both closed grounds and unsaturated
grounds will be said to be grounds.
An unsaturated ground is like a function and is given with a number

of open argument places that have to be filled in or saturated by closed

sentences and have taken them to be valid arguments. I prefer not to use that terminology
now, because I want to take proofs to be built up by inferences, and I do not want to say
that an inference constitutes a ground for its conclusion — the question is instead how
an inference can deliver a ground for the conclusion.
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grounds so as to become a closed ground. Something is a ground for an
assertion of A under the assumptions A1, A2, . . . , An if and only if it is
an n-ary unsaturated ground that becomes a closed ground for A when
saturated by closed grounds for A1, A2, . . . , An. Writing α(ξ1, ξ2, . . . , ξn) for
the unsaturated ground and α(β1, β2, . . . , βn) for the result of saturating it
by closed grounds βi for Ai, the condition for α(ξ1, ξ2, . . . , ξn) to be a ground
for A under the assumptions A1, A2, . . . , An is thus that α(β1, β2, . . . , βn) is
a closed ground for A.
Grounds are naturally typed by the propositions they are grounds for.

The open places in an unsaturated ground, in other words, the variables used
in displaying the unsaturated ground, may then also be typed to indicate
the type of the grounds that can saturate them at that place, in other words,
that can replace the variables. I shall usually supply variables with types
but shall otherwise omit type indications.
With these notions at hand, we can specify that a closed ground for an

implication p → q is something that is formed by an operation that we can
call implication grounding, → G, applied to a 1-ary unsaturated ground
β(ξp) for judging q to be true under the assumption that p is true. The re-
sult of applying this operation to the open ground β(ξp), which I shall write
→ Gξp(β(ξp)), yields thus a closed ground for p → q; it corresponds on the
syntactical level to a variable binding operator, and I indicate this by writing
the variable ξp behind the operator. If it is applied to an n-ary unsaturated
ground for A under the assumptions A1, A2, . . . , An written α(ξ1, ξ2, . . . , ξn),
I shall write → Gξi(α(ξ1, ξ2, . . . , ξn)) to indicate that it is the i-th place in
the unsaturated ground that becomes bound, which then denotes an unsat-
urated ground for A under the assumptions A1, A2, . . . , Ai−1, Ai+1, . . . , An.
We have thus the equivalence

α is a ground for p → q if and only if α =→ Gξp(β(ξp))

where β(ξp) is an unsaturated ground for judging that q is true

under the assumption that p is true.

Finally we have to pay attention to the fact that the premisses of an in-
ference may be an open judgement A(x1, x2, . . . , xm) (possibly under some
open assumptions), by which I mean that its kernel is not a proposition, but
a propositional function p(x1, x2, . . . , xm) defined for a domain of individu-
als such that for any n-tuple of individuals a1, a2, . . . , am, A(a1, a2, . . . , am)
is the judgement that affirms p(a1, a2, . . . , am). We must therefore consider
unsaturated grounds that are unsaturated not only with respect to grounds
but also with respect to individuals that can appear as arguments in proposi-
tional functions. Let A(x1, x2, . . . , xm) and Ai(x1, x2, . . . , xm) be assertions
whose propositional kernels are propositional functions over x1, x2, . . . , xm,
and let A(a1, a2, . . . , am) and Ai(a1, a2, . . . , am) be the assertions that arise
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when we apply the corresponding propositional functions to the individ-
uals a1, a2, . . . , am. Then I shall say that something is an unsaturated
ground for the open judgement A(x1, x2, . . . , xm) under the assumptions
A1(x1, x2, . . . , xm), A2(x1, x2, . . . , xm), . . . , An(x1, x2, . . . , xm) if and only if
it is an unsaturated ground α(ξ1, ξ2, . . . , ξn, x1, x2, . . . , xm) with respect to n
closed grounds and m individuals such that when saturated by the individ-
uals a1, a2, . . . , am it becomes an unsaturated ground for A(a1, a2, . . . , am)
under the assumptions A1(a1, a2, . . . , am), A2(a1, a2, . . . , am), . . . , An(a1, a2,
. . . , am).
We can then specify that a closed ground for a generalized proposition

∀xp(x) is something that is formed by an operation that I shall call universal
grounding, ∀G, applied to an unsaturated ground α(x) for the propositional
function p(x). The result of applying this operation to the open ground
α(x), which I shall write ∀Gx(α(x)), again indicating that x becomes bound
by writing it behind the operator, is thus a closed ground for ∀xp(x). We
have thus the equivalence

α is a ground for ∀xp(x) if and only if α = ∀Gx(β(x)

where β(x) is an unsaturated ground for p(x).

If we identify negated propositions, ¬p, with (p → ⊥) where ⊥ is a
constant for falsehood, for which it is specified that there is no ground for ⊥,
we have specified by recursion what can be a ground for sufficiently many
forms of propositions expressible in classical first order languages, except
that we have said nothing about grounds for atomic propositions. What
they are will of course vary with the content of the atomic propositions.
In the language of first order Peano arithmetic we may take a ground for

an identity between two numerical terms t = u to be a calculation of the
value of t and u showing that they are the same. Alternatively, if we want to
analyse a calculation as consisting of steps each of which has a ground, we
need to start from more basic grounds. As already said, all grounds cannot
be obtained by inferences. There must in other words be some propositions
like t = t or ‘0 is a natural number’ for which it is constitutive that there are
specific grounds for them that are not derived or built up from something
else.
Outside of mathematics, we may consider observation statements, and

for them, I suggest, we take relevant verifying observations to constitute
grounds. For instance, a ground for a proposition ‘it is raining’ is taken
to consist in seeing that it rains; taking “seeing” in a veridical sense, it
constitutes a conclusive ground. It does not seem unreasonable to say that
to know what proposition is expressed by “it is raining” is to know, or at
least implies that one knows, how it looks when it is raining, and hence that
one knows what constitutes a ground for the statement.
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In the case of intuitionistic predicate logic we have to say in addition what
counts as a ground for disjunctions and existential propositions, which can
be done in an obvious way analogously to the case of conjunction (but which
becomes too restrictive when disjunctions and existential propositions are
understood classically — these forms have then instead to be defined in
terms of other logical constants in the usual way).
The grounds that I have described are abstract entities that can be con-

structed in the mind and that we can become in possession of in that way.
Alternatively, we may think of a ground for a judgement as just a represen-
tation of the state of our mind when we have justified a judgement.
The possession of a ground for a judgement can manifest itself in the

naming of that object, and I have introduced a notation for doing so. An
alternative way of defining the grounds would have been to lay down these
ways of denoting grounds as the canonical notation for grounds, making
a distinction between canonical and non-canonical forms since the same
ground may be denoted by different expressions. To be in possession of a
ground for a judgement could then be identified with having constructed a
term that denotes a ground for that judgement.

7 Inferences

As the reader has already realized, the primitive operations introduced
above to specify the grounds for the affirmation of propositions of various
forms correspond to certain inference rules, namely Gentzen’s introduction
rules in the system of natural deduction for first order languages. For in-
stance, conjunction grounding corresponds to the schema for conjunction
introduction. Gerhard Gentzen saw the introduction rules as determining
the meaning of the corresponding logical constants. I have not followed
that idea here,6 but have instead seen the specifications of what constitutes
grounds for affirming propositions of a certain form to be constitutive for
propositions of that form. One can say that I have carried over Gentzen’s
idea to the domain of grounds, since the grounds are built up by primitive
grounding operations that closely correspond to his introduction rules. More
precisely, it holds for every such grounding operation Φ that if we form an
inference according to the corresponding inference rule, then we can apply
Φ to grounds for the premisses of that inference and shall get as a result a
ground for the conclusion of the inference. Furthermore, having defined a
domain of grounds by presuming these primitive grounding operations, we
can define other operations on the grounds of this domain that will have

6 In some other works (see, e.g., (Prawitz, 1973) and cf. footnote 5) I have used Gentzen’s
idea more directly in a definition of valid argument, saying that an argument whose last
inference is an introduction is valid if and only if the immediate subarguments are valid.
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similar property with respect to other inferences. This makes it possible to
give some substance to the idea that an inference is something more than
just stating a conclusion and reasons for it, an idea that we described above
(end of Section 3) in metaphorical terms as “seeing” that the proposition
affirmed in the conclusion is true given that the propositions affirmed in the
premisses are true. The mental act that is performed in an inference may
be represented, I suggest, as an operation performed on the given grounds
for the premisses that results in a ground for the conclusion, whereby we
see that the proposition affirmed is true.
To illustrate the idea let us consider an inference that is valid but not

logically valid, say a case of mathematical induction. How do we see that
its conclusion, the induction statement, A(x) say, is true for any natural
number n? Is it not reasonable to say that we see this by operating on
the given grounds for the induction base and the induction step? We start
with the given ground for the induction base A(0) and then successively
apply the ground for the induction step. In the induction step we arrive at
asserting A(n+ 1) under the induction assumption A(n), and its ground is
thus an unsaturated ground that becomes a closed ground for A(n+1) when
saturated with n and a closed ground for A(n). We realize that by applying
or saturating this ground n times by the natural numbers 0, 1, . . . , n − 1,
and the grounds that we successively obtain for A(0), A(1), . . . , A(n − 1),
we finally get in possession of a ground for A(n), which statement is thus
seen to hold.
In accordance with this idea, I shall see an individual inference act as

individuated by at least the following five items (for brevity I leave out
other additional items that may be needed to individuate an inference such
as how hypotheses are discharged):

1. a number of premisses A1, A2, . . . , An,

2. grounds α1, α2, . . . , αn,

3. an operation Φ applicable to such grounds,

4. a conclusion B, and

5. an agent performing the operation at a specific occasion.

In logic we are usually not interested in individual acts of this kind and
therefore abstract away from the agent, which leaves the four items 1–4
individuating what I shall refer to as an (individual) inference. To make
or carry out such an inference is to apply the operation Φ to the grounds
α1, α2, . . . , αn.
I define an individual inference individuated by 1–4 to be valid if α1,

α2, . . . , αn are grounds for A1, A2, . . . , An, respectively, and the result of
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applying the operation Φ to the grounds α1, α2, . . . , αn, that is Φ(α1, α2, . . . ,
αn), is a ground for B.
According to this definition an individual conjunction introduction, given

with two premisses affirming the propositions p1 and p2, grounds α1 and α2

for them, the operation conjunction grounding &G, and the conclusion af-
firming the proposition p1&p2, is trivially a valid inference since &G(α1, α2)
is by definition a ground for affirming p1&p2, given that αi is a ground for
affirming pi.
If we introduce two operations &R1 and &R2 defined for grounds for affir-

mations of propositions of conjunctive form by the equations
&Ri(&G(α1, α2)) = αi (i = 1 or 2), then an individual inference of the
type conjunction elimination, given by a premiss affirming a conjunction
p1&p2, a ground α for it, an operation &Ri, and a conclusion affirming pi,
is valid, since the ground α for the premiss must be of the form &G(α1, α2)
where αi is a ground for pi, and since the ground αi is by definition the
value of the operation &Ri applied to &G(α1, α2).
Often we also abstract away from the grounds and from any specific

premisses and conclusion of an inference, preserving only a certain formal
relation between them. We can then speak of an inference form determined
only by this formal relation and an operation Φ. For instance, modus ponens
may now be seen as such an inference form, individuated by giving an
operation Φ, namely the operation → R defined below, and by saying that
one of the premisses is affirming a proposition of the form of an implication
p → q while the other premiss affirms the proposition p and the conclusion
affirms the proposition q. If we also abstract away from the operation Φ,
we get what we may call an inference schema.
I shall say that such an inference form is valid when it holds for any

instance of the form with premisses A1, A2, . . . , An, and conclusion B and
for all grounds α1, α2, . . . , αn for A1, A2, . . . , An that the result Φ(α1, α2,
. . . , αn) of applying the operation Φ in question to α1, α2, . . . , αn is a ground
for B. An inference schema is valid if it can be assigned an operation Φ
such that the resulting inference form is valid.
For instance, modus ponens as usually understood without specifying an

operation is an inference schema, which is valid, because by assigning to it
the operation → R defined by the equation

→ R(→ Gξp(β(ξp), α) = β(α),

we get a valid inference form. In the equation above β(α) is the result of
saturating β(ξA) by α. To see that the resulting inference form is valid, we
have to see that the result of applying the operation → R to the grounds
for the premisses of an inference of this form is a ground for the conclusion
of that inference. Suppose that γ and α are grounds for premisses of that
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inference and that the premisses are affirming that the propositions p → q
and p are true. Then by how grounds for implications have been specified,
γ is of the form → Gξp(β(ξp)), where β(ξp) is an unsaturated ground for
affirming that q is true under the assumption that p is true. This means
that if β(ξp) is saturated by a ground for affirming that p is true, the result
is a ground for the affirmation that q is true. Now α is a ground for affirming
that p is true, hence β(α) is a ground for affirming that q is true, which
affirmation is the conclusion of the inference. And β(α) is the result of
applying the operation → R to the given grounds for the premisses of the
inference according to the definition of → R.

8 Conclusion

It should now be clear that if the concepts of inference, making an inference,
validity of inference, and ground are understood in the way developed here,
the question that we started with is easily answered. The general question
was how and why we acquire knowledge by making inferences, and this
was more precisely formulated as the problem to state the conditions under
which an agent P gets a ground for a judgement by inferring it from other
judgements. Given that

J is a valid inference

from judgements A1, A2, . . . , An to a judgement B, (a)

and that

the agent P has grounds α1, α2, . . . , αn for A1, A2, . . . , An, (b)

the problem was to state a third condition (c), describing what relation P
has to have to the inference J in order that it should follow from (8)–(c)
that

P has or gets a ground for B. (d)

When an individual inference is individuated not only by its premisses
and conclusion but also by grounds for the premisses and an operation
applicable to them, and when making an inference is understood as applying
this operation to the grounds, in other words, as transforming the given
grounds for the premisses to a ground for the conclusion, it becomes possible
to state the third condition that we have sought for simply as

P makes the inference J. (c)

I started out from the conviction that the question why an agent gets a
ground for a judgement by inferring it from premisses for which she already
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has a ground should be easy to answer, once the concepts involved are
understood in an appropriate way. This is now actually the case. What it
means for an inference J to be valid, as it has now been defined, is simply
that the operation Φ that comes with the inference J yields a ground for the
conclusion B when applied to the grounds α1, α2, . . . , αn for the premisses
A1, A2, . . . , An — in short, that Φ(α1, α2, . . . , αn) is a ground B. Therefore,
by making the inference J , that is, by applying the operation Φ to the given
grounds, the agent gets in possession of a ground for the conclusion.
It remains to say something about what it is for an agent to be in pos-

session of a ground for the conclusion. As already said above, it means
basically to have made a certain construction in the mind of which the
agent is aware, and which she can manifest by naming the construction.
Regardless of whether the construction is only made in the mind or is de-
scribed, it will be present to the agent under some description, which will
normally contain descriptions of a number of operations. It is presupposed
that the agent knows these operations, which means that she is able to carry
them out, which in turn means that she is able to convert the term that
describes the ground to canonical form. Furthermore the agent is presup-
posed to understand the assertion that she makes and hence to know what
kind of ground she is supposed to have for it. It follows that when an agent
has got in possession of a ground for an judgement by making an inference,
she is aware of the fact that she has made a construction that has the right
canonical form to be a ground for the assertion that she makes.
However, it does not mean that the agent has proved that the construc-

tion she has made is really a ground for her assertion. As we have already
discussed (Section 4), this cannot be a requirement for her judgement to
be justified. But if the inference she has made is valid, then she is in fact
in possession of a ground for her judgement, and this is exactly what is
needed to be justified in making the judgement, or to be said to know that
the affirmed proposition is true. Furthermore, although it is not required
in order for the judgment to be justified, by reflecting on the inference she
has made, the agent can prove that the inference is valid, as has been seen
in examples above.
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A Sound and Complete Axiomatic System of

bdi–stit Logic

Caroline Semmling Heinrich Wansing

1 Introduction

In (Semmling & Wansing, 2008), bdi–stit logic has been motivated and
introduced semantically. This logic combines the belief, desire, and intention
operators from BDI logic (Georgeff & Rao, 1998; Wooldridge, 2000) with
the action modalities from d stit logic, the modal logic of deliberatively
seeing to it that (Belnap, Perloff, & Xu, 2001), (Horty & Belnap, 1995).
The multi-modal bdi–stit logic is an expressively rich logic, which allows
a formal analysis of, for example, reasoning about doxastic decisions and
belief revision, see (Semmling & Wansing, 2009), (Wansing, 2006a).
In (Semmling &Wansing, 2009), we have presented a sound and complete

tableau calculus for bdi–stit logic based on the tableau calculus for d stit
logic defined in (Wansing, 2006b). In the present paper we introduce a
sound and complete axiomatization of bdi–stit logic and prove decidability
by establishing the finite model property.

2 Syntax and semantics

The syntax of bdi–stit logic

The language of bdi–stit logic comprises a denumerable set of sentential
variables (p1, p2, p3, . . . ), the constants ⊥, ⊤, the connectives of classical
propositional logic (¬, ∧, ∨, ⊃, ≡ ), and the modal necessity and possibility
operators 2 and3. We assume that 3 is defined as ¬2¬. This vocabulary is
supplemented by action modalities and operators used to express the beliefs,
desires and intensions of arbitrary (rational) agents. Additionally, there is
a possibility operator � taken over from (Semmling & Wansing, 2008). We
also assume a denumberable set of agent variables (α1, α2, . . . , αn, . . .).
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Definition 14 (bdi–stit syntax). 1. Every sentential variable p1, p2, . . .
and each constant ⊥, ⊤ is a formula.

2. If α1, α2 are agent variables, then (α1 = α2) is a formula.

3. If ϕ, ψ are formulas and α is an agent variable, then ¬ϕ, (ϕ∧ψ), 2ϕ,
�ϕ, α c stit : ϕ, α bel : ϕ, αdes : ϕ and α int : ϕ are formulas.

4. Nothing else is a formula.

A formula consisting of only one sentential variable or one constant is
called an atomic formula. The reading of a formula α c stit : ϕ is “agent α
sees to it that ϕ”. In (Semmling & Wansing, 2008), instead of the c stit-
operator, an operator of deliberatively seeing to it that, d stit:, is used. We
introduce the d stit-operator with the following equivalence

α d stit : ϕ ≡ (α c stit : ϕ ∧ ¬2ϕ).

This is done because it makes the presentation of the completeness proof
easier. But nevertheless it is also possible to use d stit: as a primitive
operator and to choose the axioms appropriately, cf. (Belnap et al., 2001).
A formula αbel : ϕ is read as “agent α believes that ϕ” or “agent α

has the belief that ϕ”. The readings of the desire operators α des : and the
intention operators α int : are conceived in this vein, too.

The semantics of bdi–stit logic

A bdi–stit model consists of a frame F = (Tree,≤,A, N,C,B,D, I) and
a valuation function v. The frame F is based on a branching temporal
structure as in Stit-Theory, (Belnap & Perloff, 1988). The set Tree is a non-
empty set (of moments of time) and ≤ is a partial order, which is reflexive,
transitive but acyclic, such that every moment m ∈ Tree has a unique
predecessor. Thus, the set of histories H, defined as the set of all maximal
linearly ordered subsets of Tree, and the set of situations S = {(m,h)|m ∈
Tree, h ∈ H} of the frame result from the ordered set (Tree,≤). The set of
histories passing through momentm ∈ Tree ({h | m ∈ h, h ∈ H}) is denoted
by Hm. The denumerable, non-empty set A is the set of agents, and C is
a function that maps every pair of A × Tree to a set of disjoint subsets
of histories passing through m, such that the union of all subsets is Hm.
Thus, C(α,m) = Cα

m
1 defines an equivalence relation on Hm. Histories

h and h′ are said to be choice-equivalent for agent α at moment m, if
they belong to the same set in Cα

m. The equivalence class of an arbitrary

1On this account we do not explicitly distinguish between the variables and the agents
and denote both by α, α1, . . . , αn, . . .. The context will disambiguate.
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history h in moment m is denoted by Cα
m(h) = Cα

(m,h). The set of classes{

Cα
(m,h)|h ∈ Hm

}

represents all distinguishable choice cells of agent α at

situation (m,h).
The function N : S → P(P(S)) assigns a set Ns of non-empty subsets of

situations to every situation s. The set Ns is called a neighbourhood system
of s. Its elements are called neighbourhoods of s. We also denote by N the
union of all neighbourhood systems, N = {U |U ∈ Ns, s ∈ S}. The context
will disambiguate.
The functions B and D are mappings from A× S to P(N). A set U ∈

B(α, s) = Bα
s can be regarded as a neighbourhood endorsing certain beliefs

of agent α at situation s. In the same way, every set U ∈ D(α, s) = Dα
s is

a neighbourhood endorsing certain desires.
To interpret the ascription of intentions to an agent in a situation s, we

use the function I, which maps a pair (α, s) ∈ A × S to a neighbourhood
I(α, s) = Iα

s ∈ N representing all situations compatible with what α intends
at s.
Let F = (Tree,≤,A, N,C,B,D, I) be such a frame and let Selectm be

the set of all functions σ from A into subsets of Hm, such that σ(α) ∈ Cα
m.

F satisfies the independence of agents condition of their actions, if and only
if for every m ∈ Tree,

⋂

α∈Agent

σ(α) 6= ∅

for every σ ∈ Selectm.
A pairM = (F , v) is then said to be a bdi–stit model based on the frame

F , where v is a valuation function on F , which maps the agent variables
into the set A of F and the set of atomic formulas into the powerset of
situations P(S) of F with the constraints that v(⊥) = ∅ and v(⊤) = S.
Satisfiability of a formula in a bdi–stit modelM is then defined as follows,

where, for abbreviation, we denote for an arbitrary formula ϕ by ‖ϕ‖ the
set of situations which contain every situation of M satisfying formula ϕ;
‖ϕ‖ = {s|M, s |= ϕ}.
Definition 15 (bdi–stit semantics). Let s = (m,h) be a situation in model
M = (F , v), let α, α1, α2 be agent variables, and let ϕ, ψ be formulas
according to Definition 14. Then:

M, s |= ϕ iff s ∈ v(ϕ), if ϕ is an atomic formula.

M, s |= (α1 = α2) iff v(α1) = v(α2).

M, s |= ¬ϕ iff M, s 6|= ϕ.

M, s |= (ϕ ∧ ψ) iff M, s |= ϕ andM, s |= ψ.

M, s |= 2ϕ iff M, (m,h′) |= ϕ for all h′ ∈ Hm.
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M, s |= �ϕ iff there exists U ∈ Ns with U ⊆ ‖ϕ‖.
M, s |= α c stit : ϕ iff {(m,h′)|h′ ∈ Cv(α)

s } ⊆
{(m,h′)|M, (m,h′) |= ϕ, h′ ∈ Hm}.

M, s |= α int : ϕ iff Iv(α)
s ⊆ ‖ϕ‖.

M, s |= α des : ϕ iff there exists U ∈ Dv(α)
s with U ⊆ ‖ϕ‖.

M, s |= α bel : ϕ iff there exists U ∈ Bv(α)
s with U ⊆ ‖ϕ‖.

Obviously, the operators �, α des :, and αbel : are not defined by a rela-
tional semantics, but by a monotonic neighbourhood (alias Scott-Montague,
alias minimal models) semantics, cp. (Chellas, 1980; Montague, 1970; Scott,
1970). For such an operator op, a formula opϕ∧op¬ϕ is satisfiable for any
contingent formula ϕ. Note that it is not possible to satisfy opϕ for an in-
consistent ϕ in a bdi–stit model, because every neighbourhood is non-empty.
A neighbourhood semantics of an operator nop is in use, if M, s |= nopϕ
iff ‖ϕ‖ ∈ Ns. Usually, in this semantics nop is interpreted as a kind of
necessity-operator. Since for such an operator it is also possible to sat-
isfy formulas nopϕ ∧ nop¬ϕ, we, however, prefer to read the operator �
as a kind of possibility-operator, and call it neighbourhood possibility. A
formula �ϕ is true at a situation, if ϕ is cognitively possible at situation s.
One may wonder about the meaning of the dual operator ¬ op¬ϕ. The

semantics tells us that a formula ¬ op¬ϕ is satisfied at a situation s, if
each neighbourhood of s necessarily contains a situation s′ satisfying ϕ.
But formulas such as ¬ op¬ϕ ∧ ¬ opϕ are also satisfiable, for example,
if every neighbourhood contains at least two situations, one satisfying ϕ
and another satisfying ¬ϕ, so that the dual operator does not express a
kind of neighbourhood necessity, too. How can we express necessity in a
neighbourhood semantics? Our proposal is: s |= ⊡ϕ iff for every U ∈ Ns,
U ⊆ ‖ϕ‖ (iff ϕ is a cognitive necessity at situation s). Then obviously it
holds that the implications �ϕ ⊃ ¬ ⊡ ¬ϕ and ⊡ϕ ⊃ ¬�¬ϕ are valid, but
the implications in the other direction fail. Thus, it is possible to satisfy
formulas of the form ¬⊡ ¬ϕ ∧ ¬�ϕ.
In addition to neighbourhood necessity and possibility, there are modal

operators not related to the cognitive propositional attitudes of agents: 2

and 3. These operators can be read as operators of historical necessity
and possibility, respectively, where historical possibility and necessity are
defined as dual operators: 3ϕ ≡ ¬2¬ϕ. They are adopted from (Belnap
& Perloff, 1988; Belnap et al., 2001).
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3 Axiomatization

Since the bdi–stit logic is constructed on d stit frames, cf. (Belnap & Perloff,
1988; Belnap et al., 2001), with the addition of some functions as in Scott–
Montague models, cf. (Chellas, 1980; Montague, 1970; Scott, 1970), the
axiomatization is not too difficult. We assume a complete axiomatization
of the non-modal propositional logic and add the following axioms:

(A1) 2ϕ ⊃ ϕ, ¬2ϕ ⊃ 2¬2ϕ, 2(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 2ψ).

(A2) α c stit : ϕ ⊃ ϕ, ¬α c stit : ϕ ⊃ α c stit : ¬α c stit : ϕ,
α c stit : (ϕ ⊃ ψ) ⊃ (α c stit : ϕ ⊃ α c stit : ψ).

(A3) 2ϕ ⊃ α c stit : ϕ.

(A4) α = α, (α = β) ⊃ (β = α), ((α = β) ∧ (β = γ)) ⊃ (α = γ).

(A5) (α = β) ⊃ (ϕ ⊃ ϕ[α/β]).2

(AIAk) (∆(β0, . . . , βk) ∧3β0 c stit : ψ0 ∧ . . . ∧3βk c stit : ψk) ⊃
⊃ 3 (β0 c stit : ψ0 ∧ . . . ∧ βk c stit : ψk).

The axioms (AIAk) represent the independence of agents condition for k ∈
N agents. The formula ∆(β0, . . . , βk) states that β0, . . . , βk are pairwise
distinct. We also have several derivation rules, cf. (Belnap et al., 2001):

(RN) ϕ/2ϕ,

(MP) ϕ,ϕ ⊃ ψ/ψ,,

(APCn) [3α c stit : ϕ1 ∧3(α c stit : ϕ2 ∧ ¬ϕ1) ∧ . . .∧
3(α c stit : ϕn ∧ ¬ϕ1 ∧ . . . ∧ ¬ϕn−1)] ⊃ (ϕ1 ∨ . . . ∨ ϕn).

By the axiom of n possible choices (APCn), it is assured that every agent
has at most n different alternatives to act. If the axiom (APCn) is accepted,
the resulting logic is denoted by Ln. Evidently, it holds that Ln+1 ⊆ Ln.
The new bdi operators are axiomatized by the following axioms and

derivation rules taken over from (Chellas, 1980).

(Di) α int : ϕ ⊃ ¬α int : ¬ϕ,

(F,Fb,Fd,Fi) ¬�⊥, ¬αbel : ⊥, ¬αdes : ⊥, ¬α int : ⊥,

(RM) (ϕ ⊃ ψ)/(�ϕ ⊃ �ψ),

2Note, that the substitution does not have to be uniform. It is possible, to replace some
or all occurrences of α with β.
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(RMi) (ϕ ⊃ ψ)/(α int : ϕ ⊃ α int : ψ),

(RMb) (ϕ ⊃ ψ)/(α bel : ϕ ⊃ α bel : ψ),

(RMd) (ϕ ⊃ ψ)/(α des : ϕ ⊃ α des : ψ).

From these axioms, which are proven to be complete in combination with the
axioms of the d stit logic in Section 4, we can derive the following theorems,
which state the monotony of the neighbourhood operators, and form the
typical axioms of the relationally defined ones.

(Ni) α int : ⊤,

(Tc) α c stit : (ϕ ∧ ψ) ≡ (α c stit : ϕ ∧ α c stit : ψ),

(Ti) α int : (ϕ ∧ ψ) ≡ (α int : ϕ ∧ α int : ψ), α int : ϕ ∨ α int : ψ) ⊃ α int :
(ϕ ∨ ψ),

(T) �(ϕ ∧ ψ) ⊃ (�ϕ ∧ �ψ),

(Tb) α bel : (ϕ ∧ ψ) ⊃ (α bel : ϕ ∧ αbel : ψ),

(Td) α des : (ϕ ∧ ψ) ⊃ (α des : ϕ ∧ α des : ψ)

4 Completeness and decidability

Since bdi–stit logic is based on d stit logic, which is decidable, and since it
is supplemented with some operators, which are interpreted as in decidable
classical modal logics with a neighbourhood semantics, it is not surprising
that also bdi–stit logic is decidable. We first show the completeness of the
axiomatization presented in Section 3, by extending the construction of a
canonical BT + AC (agents and choices in branching time) structure of d stit
logic, presented, for example, in (Belnap et al., 2001), to the construction of
a frame of a canonical bdi–stit model. Subsequently, we show that bdi–stit
logic has the finite model property, i.e., each non-theorem of Ln is falsifiable
in a finite bdi–stit model, by doing the same as in (Belnap et al., 2001) for
d stit logic. Since the number of axiom schemes and derivation rules is also
finite, the decidability of bdi–stit logic ensues.

Completeness

The soundness of the system of axioms and derivation rules of Section 3 is
straightforward and for (APCn) and (AIAk) as adduced in (Belnap et al.,
2001). Thus, this section deals only with the completeness of the axioma-
tization. Therefore, we intend to combine the construction of a canonical
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model for d stit logic, represented in (Belnap et al., 2001), and the construc-
tion of a canonical model of a classical monotonic modal logic, cf. (Chellas,
1980). Since the construction of the canonical d stit model has a more com-
plicated structure, this construction constitutes the basis and we expand
it appropriately to comprise the interpretation of the belief, desire, and
intention operators.
We will present the construction of the canonical BT + AC structure

which was defined by Ming Xu, cf. (Belnap et al., 2001; Xu, 1994, 1998). But
first, properties of the set WLn of maximal Ln-consistent sets of formulas,
relations on this set WLn as well as on subsets X, W of it and on sets of
agent variables are stated in almost the same manner as for the d stit logic
Ldmn. The subscript n indicates that the axiom (APCn) is included.
For a given subset W ⊆ WLn we define a relation

∼=W on a set of agent
variables, by stipulating that α1

∼=W α2, if only if, α1 = α2 ∈ w for all
w ∈W .

Lemma 3. The relation ∼=W is an equivalence relation for any W ⊆WLn.

Proof. Cf. (Belnap et al., 2001). The property of being an equivalence
relation results from the axioms (A4), which correspond to reflexivity, sym-
metry and transitivity.

The other way around, we define a relation on X ⊆ WLn by a set of
agent variables A: w ∼=A w′, if and only if, α1 = α2 ∈ w iff α1 = α2 ∈ w′

for all α1, α2 ∈ A.

Lemma 4. The relation ∼=A is an equivalence relation on an arbitrary set
W ⊆WLn for any set A of agent variables.

Proof. It is self-evident.

For the next two lemmas we fix an arbitrary subset W ⊆ WLn . Then,
the relation R ⊆W ×W is defined by wRw′ iff {φ|2φ ∈ w} ⊆ w′.

Lemma 5. The relation R ⊆W ×W is an equivalence relation.

Proof. Cf. (Belnap et al., 2001). The property of being an equivalence
relation results from axioms (A1), since 2φ ⊃ φ corresponds to reflexivity
and ¬2φ ⊃ 2¬2φ to euclidity.

Therefore, we can partition W into equivalence classes {Xi}i∈I with re-
spect to R. Let X be an arbitrary element of {Xi}i∈I . For such a subset
X ⊆W it holds, that if (α = β) ∈ w for some w ∈ X, it follows by Rule (RN)
and Axiom (A5) that 2(α = β) ∈ w, such that (α = β) ∈ w′ for all w′ ∈ X.
That warrants the use of the equivalence classes {βj}j∈J = {[α]X} of ≡X
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instead of agent variables to define the following relations Rβj
⊆ X ×X for

all j ∈ J ;
wRβj

w′ iff {φ|βj c stit : φ ∈ w} ⊆ w′.3

Lemma 6. For X ∈ {Xi}i∈I the relation Rβj
⊆ X ×X is an equivalence

relation for all j ∈ J .

Proof. Cf. (Belnap et al., 2001). The first and the second axiom of (A2)
express reflexivity and euclidity, respectively.

This definition of the relations Rβj
depends on the set X. In the follow-

ing, this X will be an arbitrary but fixed equivalence class of relation R.
We denote by Eβj

the set of all equivalence classes of relation Rβj
on X.

Lemma 7. Let X, {βj}j∈J , R, Rβj
, Eβj

for all j ∈ N be given by the
definitions above. Then it holds for all w ∈ X, φ:

(i) 2φ ∈ w iff φ ∈ w′ for all w′ ∈ X iff 2φ ∈ w′ for all w′ ∈ X.

(ii) βj c stit : φ ∈ w iff φ ∈ w′ for all w′ with wRβj
w′ iff βj c stit : φ ∈ w′

for all w′ with wRβj
w′.

(iii) βj d stitφ ∈ w iff φ ∈ w′ for all w′ with wRβj
w′ and ¬φ ∈ w′′ for

some w′′ ∈ X.

(iv) Assume f to be an arbitrary function from {βj}j∈J into the union of
Eβj
for all j ∈ J such that f(βj) ∈ Eβj

. This entails

⋂

j∈J

f(βj) 6= ∅.

(v) Let Ln with n ≥ 1 and let X, {βj}j∈J , {Rβj
}j∈J , {Eβj

}j∈J be defined
with respect to Ln. Then there are at most n different equivalence
classes Rβj

for every j ∈ J , i.e.
∣
∣Eβj

∣
∣ ≤ n.

Proof. Cf. (Belnap et al., 2001). For (i), the claim follows by Axiom (A1)
and Rule (RN). For (ii) Axioms (A2) and (A3) and Rule (RN) are needed.
Assertion (iii) results from the definition of d stit and (i), (ii). Clearly, (iv)
is backed up by (AIAk) and (v) by (APCn) for appropriate k, n.

3The abbreviation βj c stit : φ means that for some α ∈ βj , α c stit : φ ∈ w, because of
Axiom (A5) it follows for all α̃ ∈ βj , α̃ c stit : φ ∈ w.



A Sound and Complete Axiomatic System of bdi–stit Logic 209

Theorem 8 (completeness). Each Ln-consistent set Φ of bdi–stit formulas
is satisfiable by a bdi–stit model.

Proof. Let WLn be the set of all maximal Ln-consistent sets, let

A = {α|the agent variable α occurs in Φ}.

Then ∼=A is an equivalence relation on WLn . We denote by W the equiva-
lence class, such that for all agent variables α, α̃ ∈ A, β, β̃ /∈ A it holds that
α = α̃ /∈ Φ iff α = α̃ /∈ w and β = β̃ ∈ w and α = β /∈ w for all w ∈ W. Let
{Xi}i∈I be the set of all equivalence classes of relation R on W .
The basis of our bdi–stit model is a frame F = (Tree,≤,A, N,C,B,D, I)

defined on a Branching-time structure (Tree,≤). We define it as follows:

• Tree≔{w|w ∈W} ∪ {Xi|i ∈ I} ∪ {W};

• ≤ ≔ trcl({(w,w)|w ∈W}∪{(W,Xi), (Xi,Xi), (Xi, w)|w ∈ Xi, i ∈ I}∪
{(W,W )});4

• A≔{α|α belongs to an arbitrary but fixed set of class representatives
of ∼=W on all agent variables.};5

• for all i ∈ I we define the choice equivalence classes of any agent α ∈ A
at any moment in Tree:

C(α,w)≔{{hw}}, where hw is the unique history passing through
moment w with hw = {w,Xi,W}, where Xi is the equivalence
class containing w.

C(α,W )≔ {{hw|w ∈W}},
According to Lemma 6, there is an equivalence class βj with
α ∈ βj and an equivalence relation R

i
βj
on Xi. We denote the

classes of Ri
βj
on Xi by E

i
βj
and then we can define:

C(α,Xi)≔ {H |∃e : e ∈ Ei
βj
and H = {hw|w ∈ e}}.

Since there is a one-to-one correspondence between all w ∈ W and all
histories of (Tree,≤), the following concepts are well-defined. For all m ∈
Tree, w ∈W and α ∈ A, we have:

• |ϕ|≔ ⋃

i∈I

{(Xi, hw′)|ϕ ∈ w′,Xi ∈ hw′} ∈ N(m,hw) iff �ϕ ∈ w;

4Here trcl stands for the transitive closure of a binary relation.
5Recall that we use the same α for agent variables and agents. Since we now interpret
the agent variable by the agent variable itself, this naming was just a kind of forestalling.
But note that A 6= A in general.
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• |ϕ| ∈ Bα
(m,hw) iff there is α bel : ϕ ∈ w;6

• |ϕ| ∈ Dα
(m,hw) iff there is αdes : ϕ ∈ w;

• We define a relation Sα ⊆ W ×W for all α ∈ A, by stipulating that
wSαw

′ iff {ϕ|α int : ϕ ∈ w} ⊆ w′. Then we choose the sets Iα
s for

every situation s = (m,hw) inM:

Iα
(m,hw) = {(w′, hw′)|wSαw

′}.

We have to show that for all w ∈ W there is a w′ ∈ W with wSαw
′,

which means that Iα
(m,hw) 6= ∅ for any m ∈ Tree . From axiom (Di),

derivation rule (RMi) and theorems (Ti), it is evident that for any
w ∈ W the set S = {ϕ|α int : ϕ ∈ w} is consistent, thus there is a
maximal consistent set w′ with S ⊆ w′.

In analogy to (Belnap et al., 2001), we claim that the frame F satisfies
the independence of agents condition. For a given moment m ∈ Tree let
Selectm be the set of all functions from A into subsets of Hm, the set of
histories passing through moment m, where for all σ ∈ Selectm it holds that
σ(α) ∈ Cα

m. Then F satisfies this condition if and only if for every moment
m and any σ ∈ Selectm ⋂

α∈A
σ(α) 6= ∅.

Let m = w for an arbitrary w ∈ W or m = W , then the condition is
evidently satisfied. Now, let for an arbitrary i ∈ I, σXi

be any function
from A into P(HXi

), such that σXi
(α) ∈ Cα

Xi
for all α ∈ A. By the above

definition of Cα
Xi
, there is an equivalence class ej ∈ Ei

βj
with σXi

(α) =

{hw|w ∈ ej}. Define a function fi by fi(α) = ej ∈ Ei
βj
, where α ∈ βj

for j ∈ J . Then for all α, α̃ ∈ βj , fi(α) = fi(α̃), there is a well defined
corresponding function f̃i : {βj}j∈J →

⋃

j∈J

Eβj
. As well, w ∈ fi(α) iff hw ∈

σXi
(α) and by Lemma 7 (iv), it holds that

⋂

α∈A
fi(α) =

⋂

j∈J

f̃i(βj) 6= ∅, such that
⋂

α∈A
σXi

(α) 6= ∅.

Since |Cα
w| = |Cα

W | = 1 for all w ∈ W and α ∈ A, and for all i ∈ I it holds
that |Cα

Xi
| = |Ei

βj
|, it obviously follows by Lemma 7 (v) that for any α ∈ A

and m ∈ Tree, Cα
m ≤ n, cf. (Belnap et al., 2001). So any agent α has at

most n possible choices in the frame F .
6Because of Axiom (A5) for all β ∈ [α]W it follows: β op : φ ∈ w iff α op : φ ∈ w for
op ∈ {c stit,d stit,bel,des, int} and for all w ∈W .
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Now, we define a canonical model on that frameM = (F , v), where v is
an interpretation function, which maps each agent variable β on v(β) = α ∈
A with β ∈ [α]W and every atomic formula p on a subset of S containing
all situations s = (m,hw) with p ∈ w for all m ∈ Tree. Evidently, v(⊤) = S
and v(⊥) = ∅. For any agent variable α, h ∈ H, w ∈ W it holds that h ∈
Cα

Xi
(hw) iff there is e ∈ Ei

[α]Xi

and w, w′ ∈ e, where h = hw′ . Furthermore,

w, w′ ∈ e ∈ Ei
[α]Xi

iff wRi
[α]Xi

w′, such that h ∈ Cα
Xi

(hw) iff wRi
[α]Xi

w′.

We show by induction thatM, (Xi, hw) |= ϕ iff ϕ ∈ w for every bdi–stit
formula ϕ and w ∈ Xi, for all i ∈ I.

M, (Xi, hw) |= p⇔ (Xi, hw) ∈ v(p) by definition⇔ p ∈ w.
M, (Xi, hw) |= (α = β)⇔ v(α) = v(β)⇔ α ∼=W β ⇔ α = β ∈ w.

M, (Xi, hw) |= ¬ϕ⇔ (Xi, hw) 6|= ϕ
by induction⇔ ϕ /∈ w⇔ ¬ϕ ∈ w.

M, (Xi, hw) |= ϕ ∧ ψ ⇔ (Xi, hw) |= ϕ and (Xi, hw) |= ψ
by induction⇔

ϕ ∈ w and ψ ∈ w ⇔ (ϕ ∧ ψ) ∈ w.
M, (Xi, hw) |= 2ϕ⇔ for all h ∈ HXi

it holds that (Xi, h) |= ϕ

by induction⇔ for all h ∈ HXi
there is w′ ∈ Xi

with h = hw′ and ϕ ∈ w′

⇔ for all w′ ∈ Xi, ϕ ∈ w′ by Lemma 7 (i)⇔ 2ϕ ∈ w.
M, (Xi, hw) |= β c stit : ϕ⇔ for all h ∈ Cα

Xi
(hw) with β ∈ [α]W

it holds that (Xi, h) |= ϕ

⇔ for all h ∈ Cα
Xi

(hw) there is w′ with h = hw′

and it holds that (Xi, hw′) |= ϕ
by induction⇔

for all w′ ∈ Xi, if wR
i
[α]Xi

w′ then ϕ ∈ w′

by Lemma 7 (ii)⇔ α c stit : ϕ ∈ w
by Axiom (A5)⇔ β c stit : ϕ ∈ w.

M, (Xi, hw) |= �ϕ⇔ there is U ∈ N(Xi,hw)∅ 6= U ⊆ ‖ϕ‖
⇔ there is ψ with ∅ 6= |ψ| ⊆ ‖ϕ‖ and �ψ ∈ w
(∗)⇔ �ϕ ∈ w.

We want to show the equivalence
(∗)⇔.

⇐: If �ϕ ∈ w, then |ϕ| ∈ N(Xi,hw) with w ∈ Xi. That means there is
ψ = ϕ with |ϕ| ⊆ ‖ϕ‖ by induction.
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⇒: There exists ψ with ∅ 6= |ψ| ⊆ ‖ϕ‖ and �ψ ∈ w. Since

|ψ| =
⋃

i∈I

{(Xi, hw′)|ψ ∈ w′,Xi ∈ hw′}, W =
⋃

i∈I

{w|(Xi, hw) is a situation},

and |ψ| ⊆ ‖ϕ‖ it follows for all w′ ∈W and i ∈ I: ifM, (Xi, hw′) |= ψ then
M, (Xi, hw′) |= ϕ. By induction we have for all w′ ∈ W : if ψ ∈ w′ then
ϕ ∈ w′. Thus it holds for all w′ ∈ W that (ψ ⊃ ϕ) ∈ w′. By rule (RM) it
holds that (�ψ ⊃ �φ) ∈ w′ for all w′ ∈W . Since �ψ ∈ w, we have �ϕ ∈ w.

M, (Xi, hw) |= β bel : ϕ⇔ there is U ∈ Bα
(Xi,hw) with β ∈ [α]W and

∅ 6= U ⊆ ‖ϕ‖
⇔ there is ψwith ∅ 6= |ψ| ⊆ ‖ϕ‖ and αbel : ψ ∈ w
(∗∗)⇔ β bel : ϕ ∈ w.

M, (Xi, hw) |= β des : ϕ⇔ there is U ∈ Dα
(Xi,hw) with β ∈ [α]W and

∅ 6= U ⊆ ‖ϕ‖
⇔ there is ψwith ∅ 6= |ψ| ⊆ ‖ϕ‖ and αdes : ψ ∈ w
⇔ β des : ϕ ∈ w.

We only show (∗∗), which is similar to the argument for the �-operator.
The corresponding equivalence for the desire operator is shown analogously.
⇐: If β bel : ϕ ∈ w, then, by Axiom (A5), α bel : ϕ ∈ w, such that

|ϕ| ∈ Bα
(Xi,hw) with w ∈ Xi. That means there is ψ = ϕ with |ϕ| ⊆ ‖ϕ‖ by

induction.
⇒: There is ψ with ∅ 6= |ψ| ⊆ ‖ϕ‖ and αbel : ψ ∈ w. Since

|ψ| =
⋃

i∈I

{(Xi, hw′)|ψ ∈ w′,Xi ∈ hw′}, W =
⋃

i∈I

{w|(Xi, hw) is a situation},

and |ψ| ⊆ ‖ϕ‖ it follows for all w′ ∈W and i ∈ I: ifM, (Xi, hw′) |= ψ then
M, (Xi, hw′) |= ϕ. By induction we have for all w′ ∈ W : if ψ ∈ w′ then
ϕ ∈ w′. Thus it holds for all w′ ∈ W that (ψ ⊃ ϕ) ∈ w′. By rule (RMb) it
holds that (α bel : ψ ⊃ α bel : φ) ∈ w′ for all w′ ∈ W . Since α bel : ψ ∈ w,
we have α bel : ϕ ∈ w. Again because of (A5), it follows β bel : ϕ ∈ w.

M, (Xi, hw) |= β int : ϕ⇔ Iα
(Xi,hw) ⊆ ‖ϕ‖ with β ∈ [α]W

⇔ for all s = (w′, h′w) : if wSαw
′, thenM, s |= ϕ

by induction⇔ for all s = (w′, h′w) : if wSαw
′, then ϕ ∈ w′

(∗∗∗)⇔ β int : ϕ ∈ w.

At last we have to show the equivalence (∗ ∗ ∗).
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⇐: If β int : ϕ ∈ w, then α int : ϕ ∈ w and for all w′ ∈W with wSαw
′ it

follows that ϕ ∈ w′.
⇒: For all s = (w′, h′w): if wSαw

′, then ϕ ∈ w′. Because of axiom (Di)
and maximality for any ϕ and w ∈ W it holds that either α int : ϕ ∈ w or
α int : ¬ϕ ∈ w or both is not the case. The assumption α int : ¬ϕ ∈ w is
contradictory, since ¬ϕ ∈ {ψ|α int : ψ ∈ w} ⊆ w′ for any w′ with wSαw

′.
Assume ¬α int : ϕ ∈ w and ¬α int : ¬ϕ ∈ w. Then ϕ,¬ϕ /∈ {ψ|α int :
ψ ∈ w}. Since w is maximal, the set {ψ|α int : ψ ∈ w} is closed under
implication by (RMi) and (Ti), such that the sets {ϕ} ∪ {ψ|α int : ψ ∈ w}
and {¬ϕ} ∪ {ψ|α int : ψ ∈ w} are both consistent. But then there is a
maximal world w′′ with {¬ϕ}∪{ψ|α int : ψ ∈ w} ⊆ w′′ and wSαw

′′. But that
conflicts with ϕ ∈ w′ for all wSαw

′. Thus, α int : ϕ ∈ w, resp. β int : ϕ ∈ w.
At any rate, there is one (maybe more than one, then choose one) maxi-

mal consistent set w0 ∈W with Φ ⊆ w0. This w0 belongs to an equivalence
class Xi0 of R. Then,M, (Xi0 , hw0

) |= ϕ for any ϕ ∈ Φ. Thus, any consis-
tent set Φ is satisfiable.

Finite model property

We construct to a given sentence ϕ according to Definition 14 a finite frame
Ffin and add a special interpretation v, such that for every subsentence
of ϕ it is decidable whether the subsentence is satisfiable by (Ffin, v). We
adopt the filtration method as used in (Belnap et al., 2001). We take the
canonical frame F = (Tree,≤,A, N,C,B,D, I) of the previous section and
define a filtration first over all worlds by the set of all subformulas of the
given formula ϕ including all formulas derived by Axioms (AIAk) and (Ai)
for all 1 ≤ i ≤ 5, cf. (Belnap et al., 2001). Then again, we filtrate the
equivalence classes of relation R by a set of formulas implied by subformulas
of ϕ prefixed by d stit or c stit operators, such that we can define choice-
equivalent histories. To begin with, we define the sets of subformulas:

Σϕ = {ψ|ψ is a subsentence of ϕ} ,
Σi = Σϕ ∪ {¬β int : ¬ψ|β int : ψ ∈ Σϕ} ,
Σd = Σϕ ∪ {β c stit : ψ,¬2ψ|β d stit : ψ ∈ Σϕ} ∪ {¬2¬ψ|3ψ ∈ Σϕ} ,
Σe = {ψ|ψ is a subsentence of a formula of Σd or of

{β c stit : ¬β c stit : ψ|β c stit : ψ ∈ Σd}} ,
Σp = {3(β0 c stit : φ0 ∧ · · · ∧ βn c stit : φn)|n ≥ 0, β0, . . . βn differ

pairwisely, occur in ϕ, and for all 0 ≤ i ≤ n, φi = ψ0 ∧ · · · ∧ ψmi
,

0 ≤ j ≤ mi, there is βi c stit : ψj in Σe} ,
Σa = {ψ|ψ is a subsentence of a formula of Σp ∪ Σe ∪Σi}.
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For all w,w′ ∈W , we define the equivalence relation ≡Σa by setting w ≡Σa

w′ iff for all ψ ∈ Σa: (m,hw) |= ψ iff (m,hw′) |= ψ. By W̃ we denote a chosen
set of representatives of all equivalence classes. By X̃i we denote the subset
of W̃ consisting of all representatives, which belong to the equivalence class
Xi for all i ∈ I. Note that if the relation R is first applied to the set W
and then relation Σa is implemented on the equivalence classes, one gets an
isomorphic Branching Time Structure in the end. Since Σa is finite, so it is
W̃ and therewith every X̃i. Thus, we define a finite frame Ffin:

• Tree≔{w|w ∈ W̃} ∪ {X̃i|i ∈ I} ∪ {W̃} is finite.

• ≤ ≔ trcl({(w,w)|w ∈ W̃} ∪ {(W̃ , X̃i), (X̃i, X̃i), (X̃i, w)|w ∈ Xi, i ∈ I}
∪ {(W̃ , W̃ )}), such that there is again an one-to-one corresponding
relation between the histories H̃ and the set W̃ , H̃ = {hw|w ∈ W̃}.

• the set of agents is chosen as Ã = {α| there is α occurring in ϕ}, thus
Ã is also finite.7

• for all α ∈ Ã we define relations ≡ α
Σe
on every set X̃i, by w ≡ α

Σe
w′ iff

for all α c stit : ψ ∈ Σe it holds that α c stit : ψ ∈ w iff α c stit : ψ ∈ w′.
By Ũ i

[α]
X̃i

we denote the set of all equivalence classes on X̃i. With this

definition it is possible to define the choice equivalent function C̃ in
the finite frame:

C̃(α,w)≔ {{hw}}, where hw is the unique history passing through

moment w with hw = {w, X̃i, W̃},
C̃(α, W̃ )≔ {{hw|w ∈ W̃}},
C̃(α, X̃i)≔

{

H|∃e : e ∈ U i
[α]

X̃i

and H = {hw|w ∈ e}
}

.

Since there is a one-to-one correspondence between all w ∈ W̃ and
all histories of (Tree,≤), the following notions are well-defined. For all
�φ, α bel : φ, α des : φ ∈ Σϕ, m ∈ Tree, w ∈ W̃ and α ∈ Ã, we have:

• |φ|≔ ⋃

i∈I

{(w′, hw′)|φ ∈ w′} ∈ N(m,hw) iff �φ ∈ w,

• |φ| ∈ B̃α
(m,hw) iff α bel : φ ∈ w,

• |φ| ∈ D̃α
(m,hw) iff α des : φ ∈ w,

7We neglect the problem of identity statements of agents, since it can be handled as
above.
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• For all w ∈ W̃ and each α ∈ Ã set tαw = {φ|α int : φ ∈ w}. Then,
there is at least one w̃α ∈ W̃ with tαw ∩Σa ⊆ w̃α, since tαw is consistent
by (Ti), (Di). We define for all m ∈ Tree:

Ĩα
(m,hw) = {(w̃α, hw̃α)|w̃α ∈ W̃ , tαw ∩ Σa ⊆ w̃α}.

By construction, these sets are not empty.

Lemma 8. Let F = (Tree,≤,A, N,C,B,D, I) be the canonical frame, let
i be fixed, Xi the corresponding equivalence class Xi ∈ Tree, X̃i the corre-
sponding class in the finite frame Ffin = (Tree,≤, Ã, Ñ , C̃, B̃, D̃, Ĩ) filtrated
by the sets of subformulas of ϕ and U i

[α]
X̃i

the sets of equivalence classes of

≡Σe on X̃i for all α ∈ Ã.

(i) If 2ψ ∈ Σa, w ∈ X̃i, then

2ψ ∈ w iff ψ ∈ w′ for all w′ ∈ X̃i.

(ii) If α c stit : ψ ∈ Σe, w ∈ X̃i, then

α c stit : ψ ∈ w iff ψ ∈ w′ for all w′ ∈ X̃i with w ≡ α
Σe
w′.

(iii) For all equivalence classes eα ∈ Ũ i
[α]

X̃i

it holds that

⋂

α∈Ã

eα 6= ∅.

(iv) Let ϕ ∈ Ln with n ≥ 1, then for any j ∈ [0, |Ã|] it holds that
∣
∣
∣U i

[α]
X̃i

∣
∣
∣ ≤ n.

Proof. Cf. (Belnap et al., 2001).

This frame satisfies the independence of agents condition. For all mo-
ments m ∈ {W̃ ,w|w ∈ W̃} it is evident that for an arbitrary function
σm : Ã → C̃m the intersection

⋂{σm(α)|α ∈ Ã} is not empty. If m = X̃i,
then for all α ∈ Ã there is eα ∈ U i

[α]
X̃i

with σm(α) = eα, such that with the

frame property 8 (iii) the set
⋂{σX̃i

(α)|α ∈ Ã} is also not empty. Assuming
Ln, the corresponding axiom of possible choices is also fulfilled, since for all

α ∈ Ã,
∣
∣
∣C̃α

W̃

∣
∣
∣ =

∣
∣
∣C̃α

w

∣
∣
∣ = 1 and

∣
∣
∣C̃α

X̃i

∣
∣
∣ =

∣
∣
∣
∣
U i

[α]
X̃i

∣
∣
∣
∣
≤ n by Lemma 8 (iv).

For any ψ ∈ Σϕ we can show that for any equivalence class X̃i it holds
that

Mfin(X̃i, hw) |= ψ iff ψ ∈ w,
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where Mfin = (Ffin, v) and v is the valuation function defined as for the
canonical model, but restricted to W̃ . The proof is by induction.

Mfin, (X̃i, hw) |= p⇔ X̃i, hw) ∈ v(p)⇔ p ∈ w.
Mfin, (X̃i, hw) |= ¬ψ ⇔ (X̃i, hw) 6|= ψ ⇔ ψ /∈ w ⇔ ¬ψ ∈ w.

Mfin, (X̃i, hw) |= φ ∧ ψ ⇔ (X̃i, hw) |= φ and (X̃i, hw) |= ψ

⇔ φ ∈ w and ψ ∈ w ⇔ (φ ∧ ψ) ∈ w.
Mfin, (X̃i, hw) |= 2ψ ⇔ for all h ∈ HX̃i

it holds that (X̃i, h) |= ψ

⇔ for all h ∈ HX̃i
there is w′ ∈ X̃i with

h = hw′ and ψ ∈ w′

⇔ for all w′ ∈ X̃i, ψ ∈ w′ by Lemma 8 (i)⇔ 2ψ ∈ w.
Mfin, (X̃i, hw) |= α c stit : ψ ⇔ for all h ∈ C̃α

X̃i
(hw) it holds that

(X̃i, h) |= ψ

⇔ eα ∈ U i
[α]

X̃i

with w ∈ eα :

⇔ for all w′ ∈ X̃i, if w, w
′ ∈ ej then ψ ∈ w′

by Lemma 8 (ii)⇔ α c stit : ψ ∈ w.
Mfin, (X̃i, hw) |= �ψ ⇔ there is U ∈ Ñ(X̃i,hw)∅ 6= U ⊆ ‖ψ‖

⇔ there is φ ∈ Σϕ with ∅ 6= |φ| ⊆ ‖ψ‖ and
�φ ∈ w

⇔ �ψ ∈ w.

If |φ| ⊆ ‖ψ‖, then |φ| ⊆ |ψ|, i.e. for all w′ ∈ W̃ : (ψ ⊃ φ) ∈ w′. Assume there
is w ∈ W with (ψ ⊃ φ) /∈ w. Since W̃ is a complete set of representatives
of all ≡Σa-equivalence classes, there is w̃ ∈ W̃ with w ≡Σa w̃. For the
canonical modelM it holds that (ψ ⊃ φ) /∈ w. ThenM, (Xi, hw) |= ¬(ψ ⊃
φ) andM, (Xi, hw̃) |= (ψ ⊃ φ). Thus,M, (Xi, hw) 6|= ψ orM, (Xi, hw) |= φ
andM, (Xi, hw̃) |= ψ andM, (Xi, hw̃) 6|= φ, but this conflicts with w ≡Σa

w̃, as φ,ψ ∈ Σa. Therefore, for all w ∈ W : φ ⊃ ψ ∈ w, and so by (RM)
�φ ⊃ �ψ ∈ w. Consequently, �ψ ∈ w. The other direction is obvious with
ψ = φ. Similar considerations give:

Mfin, (Xi, hw) |= αbel : ψ ⇔ there is U ∈ B̃α
(Xi,hw)∅ 6= U ⊆ ‖ψ‖

⇔ there is φ ∈ Σϕ with ∅ 6= |φ| ⊆ ‖ψ‖ and
α bel : φ ∈ w ⇔ αbel : ψ ∈ w.
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Mfin, (Xi, hw) |= α des : ψ ⇔ there is U ∈ D̃α
(Xi,hw)∅ 6= U ⊆ ‖ψ‖

⇔ there is φ ∈ Σϕ with ∅ 6= |φ| ⊆ ‖ψ‖ and
α des : φ ∈ w⇔ αdes : ψ ∈ w.

Mfin, (Xi, hw) |= α int : ψ ⇔ Ĩα
(Xi,hw) ⊆ ‖ψ‖

⇔ for allw′ ∈ W̃ : if tαw ∩ Σa ⊆ w′, thenψ ∈ w′.

⇔ α int : ψ ∈ w.

Assume α int : ψ /∈ w, then ¬α int : ψ ∈ w. Because of (Di) there are two
different cases possible, (i) α int : ¬ψ ∈ w or (ii) ¬α int : ¬ψ ∈ w. If (i), then
¬ψ ∈ tαw and, since Σi ⊆ Σa, ¬ψ ∈ tαw ∩Σa ⊆ w′. Or (ii) ¬α int : ψ ∈ w and
¬α int : ¬ψ ∈ w; then ψ,¬ψ /∈ tαw. But then there is a w′′ with tαw∩Σa ⊆ w′′

and ¬ψ ∈ w′′. These contradictions imply α int : ψ ∈ w.
To sum up, like d stit logic, bdi–stit logic is finitely axiomatizable and

has the finite model property. Therefore, it is decidable.
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A Procedural Interpretation of Split Negation

Sebastian Sequoiah-Grayson∗

1 Introduction

Taking the procedural/dynamic turn in the study of information seriously
means that we need to make the transition from the study of bodies of in-
formation, to the study of the manipulations of such bodies of information.
In this case, we will not be able to carry out the study of informational
dynamics by restricting our attention to bodies of information, or even to
the structure of the bodies of information, although this is an important
component. We will also need to pay attention to the procedures via which
such bodies of information are combined and developed, and processed.
One restriction that we might place on a particular study of informational

dynamics is that we examine only positive information. That is, we might
restrict our attention to the positive fragments of various logics used to
underpin logics of information flow. Restricting ourselves to the study of
positive information is justifiable on several counts, not the least of which
is that it makes perfect sense to restrict ourselves to simpler cases, as even
these may turn out to be surprisingly complicated. However, to do justice
to the phenomena of information flow, any adequate theory of information
processing will have to allow for the representation of both positive, and
negative information. In this case, attention will not be restricted to the
positive fragment of the various logics used to underpin logics of information
flow.

∗Many thanks to Vladimı́r Svoboda, Michal Pelǐs, and all behind Logica 2008! This
research was made possible by the generous support of the Harold Hyam Wingate Foun-
dation. This research was carried out whilst undertaking a Visiting Research Fellowship
at the Tilburg Institute of Logic and Philosophy of Science (TiLPS), at Tilburg Uni-
versity, The Netherlands. I am extremely grateful to Stephan Hartmann and everyone
at TiLPS for the vibrant, research-griendly atmosphere provided. I am also extremely
grateful to Edgar Andrade, Johan van Benthem, Francesco Berto, Cararina Dutilh, Volker
Halbach, Christian Kissig, Greg Restall, Heinrich Wansing, and Tim Williamson for many
invaluable suggestions. Any errors that remain are my own.
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This essay is an argument for a particular procedural interpretation of
negative information. In particular, it is an argument for a procedural inter-
pretation of split negation. A split negation pair 〈∼,¬〉 is definable in any
non-commutative logic. As such, a procedural interpretation of split nega-
tion should adoptable in principle for any non-commutative logic, be this a
non-commutative linear logic, or a variant of the Lambek calculus or what-
ever. Accordingly, we will be abstracting across non-commutative logics in
general as opposed to looking in detail at any one non-commutative logic in
particular. However, an information–processing application will be the gen-
eral motivation. From a philosophical standpoint, the closest analogues are
the non-commutative linear logics, albeit under procedural interpretations.
Linear logics were developed in order to track resource-use: formula are un-
derstood as resources, and in this case number of times they occur becomes
relevant. As such, the mark of linear logics in general is the rejection of
contraction. However, if the formula are taken to be concrete data, then
the accessibility of these resources also becomes relevant. It is often the case
that data have spatiotemporal locations, such as in the memories of agents
or computers, and remote data will be less easy to access than adjacent data.
In a more sensitive logic of resources then, it is not only the multiplicity of
data, but also their order that is important. Spatiotemporal obstacles often
need to be circumvented so that data may be accessed, hence commutation
is inappropriate by virtue of its destroying the very ordering that we would
like to preserve. In situations where actual information processing is being
carried out, the arrangement of the data is crucial (Paoli, 2002, 28-9). For
recent work on non-commutative linear logics, see (Abrusci & Ruet, 2000),
and for an explicitly procedural examination of commutation in the context
of agent-based information processing, see (Sequoiah-Grayson, 2009).
Interpreting split negation is a known difficulty (Dosen, 1993, 20). For

any negation type there will be more than one way of defining it. Given a
definition, we then need to provide an interpretation of the resulting nega-
tion in terms commensurate with the intended application. In our case, the
intended application is the area of dynamic information processing. Given
the procedural aspect, we will define the negation of A in terms of A im-
plying bottom (0). This is commensurate with information processing due
to the implication doing the work being analysed in procedural terms. Sans
the procedural aspect, an interpretation of the negation of A in terms of A
implying 0 goes back at least to (Kripke, 1965).
This essay develops and proposes a particular interpretation of the nega-

tion of A in terms of A implying 0 in information processing terms: In
section 2, information frames and information models are introduced. We
also introduce the definition of split negation. The informational reading
of the ternary relation R of frame semantics is introduced. In section 3,
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a procedural interpretation of split negation under the definition given in
section 2 is proposed. Up to this point our exploration will have been con-
ducted in purely model-theoretic terms. It is in section 3 that we touch on
to proof-theoretical matters. This is essentially to check the procedural in-
terpretation against a series of universally valid proof-theoretical properties
of split negation. Put simply, the proposal is that we interpret the negation
of A in terms of the ruling out of particular procedures, with these proce-
dures being any procedure that involves combining the negation of A with
A itself.
The first step is to introduce the notion of an information frame and

model, so that we may specify our definition of split negation.

2 Information Frames and Models

Take a non-commutative information frame F 〈S,⊑, •,⊗, → ,←,0〉 where S
is a set of information states x, y, . . . that may be inconsistent, incomplete,
or both, the binary relation ⊑ is a partial order on S of informational
development/inclusion, • is the binary composition operator on information
states such that due to commutation failure we have it that x • y 6= y • x,
⊗ is (non-commutative) fusion, → and ← are right and left implication
respectively, and 0 is bottom.1 Making all of this clear is easier once we
have a model.
A model M ≔ 〈F,〉 is an ordered pair F 〈S,⊑, •,⊗, → ,←,0〉 and 

such that  is an evaluation relation that holds between members of S and
formula. Where A is a propositional formula, and x, y, z ∈ F,  obeys the
heredity condition:

For all A, if x  A and x ⊑ y, then y  A, (1)

And also obeys the following conditions for each of our connectives:

x  A⊗B iff for some y, z,∈ F s.t. y • z ⊑ x, y  A and z  B. (2)

x  A → B iff for all y, z ∈ F s.t. x • y ⊑ z, if y  A then z  B. (3)

x  A← B iff for all y, z ∈ F s.t. y • x ⊑ z, if y  A then z  B. (4)

x  0 for no x ∈ F. (5)

1A notational note: 0 is commonly written as ⊥. The difference in notation is to ensure
that no confusion is made between bottom, and the perp relation of incompatibility (Dunn,
1993), (Dunn, 1994), (Dunn, 1996), written as ⊥. In the recent literature on negation, ⊥
is so often used for the perp relation that using it for bottom creates too great a risk for
misunderstanding. Hence, we follow (Girard, 1987) in the use of 0 for bottom.
Many non-commutative logics are also non-associative, such as the non-associative

Lambek calculus among others. However, since nothing that follows depends on either
the presence or absence of associativity, we should be able to safely ignore this issue for
our purposes.



222 Sebastian Sequoiah-Grayson

The evaluation relation  may be understood in different ways, depend-
ing on the context of application. For example, if we were to be working
with language frames and syntactically categorising particular alphabetical
strings, we would understand x  A to mean string x is of type A. We
might instead consider a scientific research project with its various develop-
mental phases. In this case the development relation ⊑ will order different
states of a research project over time (with the idealisation that there is
no information-loss). Here we would understand x  A to mean that the
proposition A is known at state x, and that this particular state of develop-
ment in the project supports A. We will in fact return to this very idea in
5 below. For now however, we need something a little more general. Along
with (Mares, 2009) we will understand x  A to mean that the information
in state x carries the information that A. Hence, we may also say that x
supports the information that A. This is very similar to the familiar se-
mantic entailment relation �. The difference is that we want to allow for
the information at x being incomplete and/or inconsistent. There are many
applications where we might want to do this. Taking inconsistency as the
running example, consider various states of an agent as the agent reasons
deductively. In this case, x may support A where A is ‘p and not p’, but
this is different from x making A true, at least in the usual sense of “making
true”, as there is no possible way that the world can be such that x could be
true of it. One might wish to understand ’supports’ as ‘makes true’ if one
holds to a dialethic paraconsistentism whereby at least some contradictions
are taken to be true. However, we will sidestep this particular debate and
stay with the interpretation of ’supports’ that takes it to be the subtler
relative of ’makes true’ in the manner stipulated above.
The reader familiar with the ternary relation R of frame semantics will

recognise (2)–(4) as the ternary conditions for ⊗, → , and ← respectively,
under an explicitly informational reading. R may be parsed in terms of the
two binary relations • and⊑ and such that Rxyz comes out as x•y ⊑ z. How
should we read formulas containing the binary composition relation •? A
common and traditional way of understanding binary composition is simply
to take x•y as x together with y. In this case • will behave much the same as
set union such that x together with y is no different to y together with x, and
x together with itself is no different from x and so forth. However, we are not
restricted to such a reading of •. There is in general no canonical reading
of Rxyz. That is to say that there is no canonical interpretation of the
model theory. Although this is frustrating when one encounters the ternary
relation for the first time, it is a key point with respect to the flexibility of
ternary semantics. In our case, we have it that • is non-commutative, so
x•y 6= y•x. In ternary terms, non-commutation comes out as Rxyz 6= Ryxz.
Hence, simply interpreting x • y as x together with y will blur the very
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ordering that non-commutation is trying to preserve. We could stipulate
that “x composed with y” differs from “y composed with x”, however this
is slightly strained and does not read straight off a casual use of ‘composed’.
A better way to keep this distinction robust is to read x•y as x applied to y.
“Applying” is an order-sensitive notion, and one that fits comfortably with
dynamic/procedural operations. So we can think of x•y as the composition
of x with y, where this composition is order-sensitive, and we will mark this
order-sensitivity by speaking of “application” instead of “composition”.
Of course we are not merely concerned with syntactic constructions, as

x, y, z ∈ S, and S is a set of information states. We are concerned with the
application of the information in one state to the information in another.
One way then, of reading Rxyz, is that Rxyz holds iff the result of applying
the information in x to the information in y is contained in the information
in z, and this is precisely what x • y ⊑ z tells us. Another way of putting
this is to say that the information in z is a development of the information
resulting from the application of the information in x to the information in
y.
The role that information application plays here is not redundant, and

neither is it merely to mark order-sensitivity. We are not simply concerned
with ordered sequences of information states — something like an order-
sensitive conjunction where we would have one piece of information, then
another and then another etc. We are concerned with something much
more subtle. We are concerned with the interaction between information
states. This concern with interaction, or process, is precisely why it is that
we are concerned with order-sensitivity in the first place. Order-sensitivity
is in this sense a means to an end, with this end being the individuation
of procedures of dynamic information processing. This sense of “applied”
carries over in a natural way from the information states themselves, to the
propositions supported by the information states. It is easiest to see this
with an example.
Take fusion, and its frame conditions given in (2). (2) can be interpreted

to state that an information state x carries the information resulting from
the application of the information that A to the information that B if and
only if x is itself a development of the application of the information in
state y to the information in state z, where y carries the information that A
and z carries the information that B. This is a little longwinded, and going
in the right to left hand direction is a little more straightforward: for two
states y and z that carry the information that A and that B respectively,
the application of y to z will result in a new information state, x, such that x
carries the information that results from the application of the information
that A to the information that B. The analogous interpretations of the
frame conditions for right and left implication ((3), and (4), respectively)
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unpack in a similar manner.
The fusion connective and the implication connectives are not indepen-

dent; they form a family of sorts. Our fusion and implication connectives
interrelate in the following manner:

A⊗B ⊢ C iff B ⊢ A → C. (6)

A⊗B ⊢ C iff A ⊢ C ← B. (7)

In deductive information processing, we understand the premises as data-
bases and the consequence relation ‘⊢’ as the information processing mech-
anism, a more brutally syntactic operation that the information carry-
ing/supporting of . In informational terms, we may read A ⊢ B as in-
formation of type B follows from information of type A, or the information
in B follows from the information in A etc. We can think of typing as en-
coding, in which case we might also read A ⊢ B as the information encoded
by B follows from the information encoded by A. (6) and (7) make sense.
Take (6), starting with the left-to-right-hand direction: If the information

in C follows from the information resulting from the application of the
information in A to the information in B, then from the information in
B alone it follows that we have the information in C conditional on the
information in A. The right-to-left-hand direction works out similarly: If
from the information in B alone we can get the information in C conditional
on the information in A, then we can get the information in C via the
application of the information A to the information in B. Now take the
left-to-right-hand direction of (7): If, again, the information in C follows
from the information resulting from the application of the information in A
to the information in B, then from the information in A alone it follows that
we have the information in C, this time conditional on the information in
B. The right-to-left-hand direction works on similarly here too: If from the
information in A alone we can get the information in C conditional on the
information in B, then we can get the information in C via the application of
the information in A to the information in B. (6) and (7) are informational
processing versions of the deduction theorem.
With regards to (5), no information, in any context whatsoever, is of

type 0. There is nothing that we can do to get 0, and 0 is not supported
by any information state in our frame F.
Now we have the logical tools that we need in order to begin looking at

negative information. We can define a split negation pair in terms of double
implication:

∼A≔A → 0, (8)

¬A≔ 0← A. (9)
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In this case, the frame conditions for ∼A and ¬A are cashed out in explicit
informational terms as follows:

x  ∼A[A → 0] iff for each y, z s.t. x • y ⊑ z, if y  A then z  0, (10)

x  ¬A[0← A] iff for each y, z s.t. y • x ⊑ z, if y  A then z  0. (11)

The major points so far have been the informational translation of the
ternary relation R, such that Rxyz comes out as as x • y ⊑ z, and the
definition of split negation in terms of double implication, such that ∼A≔
A → 0 and ¬A≔ 0 ← A. The definitional component here is important.
Our double implication connectives → and ← have their conditions given
by R, albeit under an informational reading, in (3) and (4) respectively.
This means that our split negation connectives ∼ and ¬ ultimately have
their definitions in terms of the ternary relation also.

3 A Procedural Interpretation of Split Negation

How should we interpret ∼A and ¬A given their respective definitions,
A → 0 and 0 ← A? The type of answer we give here will depend on
the domain. For example, if we were working with actions, then we could
interpret ∼A as the type of action that cannot be followed by an action
of type A, and we could interpret ¬A as the type of action that cannot
follow an action of type A etc. For any interpretation that we give to split
negation, the interpretation has to be compatible with certain properties
that hold universally for any split negation. The purpose of this section is
to check the presently proposed procedural interpretation of split negation
against these properties, which are listed as (12)–(18) below.
We are working with information. This is still fairly general though, and

various informational applications will likely influence our choice of inter-
pretation. By taking the procedural/dynamic turn and working with infor-
mation flow, the application aspect at work in both fusion and the binary
combination operator get taken very seriously. In this case, the suggestion
is that we interpret ∼A as the body of information that cannot be applied
to bodies of information of type A, and that we interpret ¬A as the body
of information that cannot have bodies of information of type A applied to
it. The interpretation is supported by the model theory; by the information
states supporting ∼A, ¬A, and A. If x supports ∼A and y supports A, x
cannot be applied to y. Similarly, if x supports ¬A and y supports A, then
y cannot be applied to x. This is not because such an application would
cause an explosion of information, but because it could never generate any
information. The interpretation of split negation in terms of ruling out
particular informational applications is not gerrymandered. It is directly
supported by the frame conditions for ∼A and ¬A.
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To see this, note that the frame conditions in informational terms for
∼A laid out in (10) above tell us that there is no information resulting from
the application of x to y where x  ∼A and y  A, since x • y ⊑ z and
z  0 (and z  0 nowhere). Suppose though that we were to attempt to
apply ∼A to A, in other words to attempt ∼A⊗A. In informational terms,
the frame conditions for fusion (2) tell us that an information state x will
support ∼A ⊗ A iff for some information states y and z such that x is an
informational development of the application of the information in y to the
information in z, y supports ∼A and z supports A. However, we know from
our definition of ∼A in terms of A → 0, that there is no state x such that
it supports the application of ∼A to A, this is simply what (10) tells us.
Support for the ruling out conditions on ¬A from the frame conditions

for ¬A works similarly, and involves only a directional change. The frame
conditions for ¬A laid out in (11) above tell us that there is no information
resulting from the application of the information state y to the information
state x where y  A and x  ¬A since y • x ⊑ z and z  0 (and z 

0 nowhere). If we were to attempt to apply A to ¬A, in other words
attempt A⊗ ¬A, then there would need to be an information state x that
supportedA⊗¬A, and this would be the case iff there were some information
states y and z such that y supported A and z supported ¬A and x was an
informational development of the application of y to z. From our definition
of ¬A in terms of 0 ← A however, we know that there is no state x such
that it supports the application of A to ¬A, this is marked out by (11).
Given the non-gerrymandered nature of the interpretation of split nega-

tion in terms of procedural prohibition, we should be able to give a natu-
ral interpretation of general proof-theoretic, hence information–processing
properties of split negation in such terms. For any split negation, indepen-
dently of which structural rules are present, the following (12)–(18) hold:

A ⊢ B
∼B ⊢ ∼A (12)

(12) makes sense in terms of the ruling out of information processing pro-
cedures. Given a split negation, and given also that information of type B
follows from information of type A, then ruling out the procedure ∼A⊗ A
follows from ruling out the procedure ∼B ⊗ B. This is just to say that
given that we can get information of type B from information of type A,
then from the body of information that can never be applied to bodies of
type B, we can get the body of information that can never be applied to
bodies of information of type A.

A ⊢ B
¬B ⊢ ¬A (13)

The reasoning with regards to (13) is directly analogous to that surrounding
(12): Again given a split negation, and again given that information of type
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B follows from the information of type A, then ruling out the procedure
A⊗ ¬A follows from ruling out the procedure B ⊗ ¬B. This is just to say
that given that we can get information of type B from information of type
A, then from the body of information that can never have bodies of type
B applied to it, we can get the body of information that can never have
bodies of information of type A applied to it. The reasoning surrounding
(14) and(15) is slightly more involved than in (12) and (13).

A ⊢ ∼B
B ⊢ ¬A (14)

B ⊢ ¬A
A ⊢ ∼B (15)

We can take (14) and (15) together, getting the split negation property :

A ⊢ ∼B iff B ⊢ ¬A. (16)

Starting with the left-to-right-hand direction: If we can, on the basis of
information of type A alone, get the body of information that can never be
applied to bodies of information of type B, then on the basis of information
of type B alone, we can get the body of information that can never have
bodies of information of type A applied to it. The intermediate step is this:
If we were to apply A to B (i.e. A ⊗ B) then we would get nothing, viz.
0, since A ⊗ B ⊢ 0, since if A ⊢ ∼B then A ⊗ B ⊢ 0. As such, from
information of type B alone we can get the body of information that can
never have bodies of information of type A applied to it. The right-to-
to-left-hand direction is similar: If we can, on the basis of information of
type B alone, get the body of information that can never have bodies of
information of type A applied to it, then were to apply B to A (i.e. B ⊗A)
then we would get nothing, viz. 0, since B ⊗ A ⊢ 0, since if B ⊢ ¬A then
B ⊗A ⊢ 0. As such, then from information of type A alone we can get the
body of information that can never be applied to bodies of information of
type B. (17) and (18) are more straightforward:

A ⊢ ¬∼A, (17)

A ⊢ ∼¬A. (18)

On the basis of information of type A alone, we can rule out the body of
information that can never be composed with bodies of information of type
A. This is just to say that we can rule out A → 0. This is just what (17)
states under a procedurally focused informational interpretation. Similarly,
on the basis of information of type A alone, we can also rule out the body
of information that can never have bodies of information of type A applied
to it. In this case we are ruling out 0← A. In this context, “ruling out” is
a form of procedural prohibition.
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The proposal for a procedural interpretation of split negation has been
that we interpret ∼A (that is A → 0) as the body of information that
cannot be applied to bodies of information of type A, and that we interpret
¬A (that is 0← A) as the body of information that cannot have bodies of
information of type A applied to it. We have seen that this interpretation of
split negation is entirely natural once we translate the ternary relation R into
its informational form, in which case the interpretation is directly supported
by the frame conditions for ∼A and ¬A, (10) and (11) respectively. We have
also seen that the interpretation is compatible with the universally valid split
negation properties (12)–(18).

4 Conclusion

We have seen how it is that we may reconstruct the ternary relation of frame
semantics, Rxyz in explicitly dynamic informational terms, as x • y ⊑ z.
This dynamic informational reconstruction carries over to any connective
defined in terms of the ternary relation, allowing us to give explicitly proce-
dural accounts of double implication and fusion. Since we have used double
implication to define a split negation, ∼A≔ A → 0, and ¬A≔ 0← A, we
have a procedural definition of split negation.
Given the definition of split negation in these dynamic informational

terms, we have been able to “read off” a natural procedural interpretation
of split negation. This interpretation has been shown to be compatible with
the universally valid properties of a split negation.
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Reference to Indiscernible Objects

Stewart Shapiro∗

1 The problem

Some critics of my ante rem structuralism (Shapiro, 1997) argue that I
have an issue with structures that have indiscernible places.1 A structure
is said to be “rigid” if its only automorphism is the trivial one based on the
identity mapping. The main exemplars of the alleged problem are non-rigid
structures. It is an easy theorem that isomorphic structures are equivalent:
Let f be an automorphism on a given structure M and let Φ(x1, . . . , xn)
be any formula in the language of the structure. Then for any objects
a1, . . . , an in the domain of M , M satisfies Φ(a1, . . . , an) if and only if M
satisfies Φ(fa1, . . . , fan). If f is a non-trivial automorphism, then there is
an object a such that fa 6= a. In this case, a and fa are indiscernible, at
least concerning the language of the structure: anything true of one of them
will be true of the other. So non-rigid structures have indiscernible objects.
The most-cited example is that of complex analysis. Start with the lan-

guage of fields, and consider the algebraic closure of the reals, which is
unique up to isomorphism (in its second-order formulation). The complex
numbers are the intended model. The function that takes a complex num-
ber a + bi to its conjugate a − bi is an automorphism. It follows that for
any formula Φ(x), with only x free, Φ(a + bi) if and only if Φ(a − bi). In
particular, Φ(i) if and only if Φ(−i). So i and −i are indiscernible; they

∗ I gave early versions of parts of this paper at the philosophy of mathematics workshop
at Oxford, the Arché Research Centre at the University of St. Andrews, Ohio State
University and the University of Minnesota. Thanks to all of the audiences there. I
am indebted to Craige Roberts, Gabriel Uzquiano, Ofra Magidor, Cathy Müller, Dan
Isaacson, Graham Priest, Kevin Scharp, Robert Kraut, and Jason Stanley.
1The early critics include (Burgess, 1999, pp. 287–288), (Hellman, 2001, pp. 192–196),
and (Keränen, 2001, 2006). More recent participants in the debate include (Ladyman,
2005), (Button, 2006), (Ketland, 2006), (MacBride, 2005, § 3), (MacBride, 2006b), and
(Leitgeb & Ladyman, 2008). My own contributions include (Shapiro, 2006b), (Shapiro,
2006a), and (Shapiro, 2008).
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have the same properties, at least among those that can be expressed in
the language. Another oft-cited example is Euclidean space, where things
are even worse. Any two points in Euclidean space can be connected with
a linear translation, which is an automorphism. So, it seems, all of the
points in Euclidean space are indiscernible, at least with respect to proper-
ties that can be expressed in the language of geometry. Hannes Leitgeb and
James Ladyman (2008) point out that since some (simple) graphs have no
relations, any bijection on them is an isomorphism. So with those graphs,
every point is indiscernible from every other. The simplest of these simple
graphs are isomorphic to the finite cardinal structures introduced in my
chapter on epistemology in (Shapiro, 1997, Ch. 4).
Why is this a problem for ante rem structuralism? Some ill-chosen re-

marks in my book at least suggest a principle of the identity of indiscernibles,
which, in light of examples like these, would reduce the view to absurdity.
I’d be committed to saying that i = −i, and that there is only one point in
Euclidean space. But there is little point in trying to figure out what my
view was. I reject the identity of indiscernibles now.
Much of the discussion of this issue is metaphysical. John Burgess (1999,

p. 288) points out that although the two complex roots of −1 are distinct,
on my view “there seems to be nothing to distinguish them.” This seems to
invoke something in the neighborhood of the Principle of Sufficient Reason.
If something is so, then there must be something that makes it so, or at least
something that explains why it is so. Jukka Keranänen (2001) articulates
a general metaphysical thesis that anyone who puts forward a theory of
a type of object must provide an account of how those objects are to be
“individuated”. According to Keränen, for each object a in the purview of
a proposed theory, we have to be told “the fact of the matter that makes a
the object it is, distinct from any other object” of the theory, by “providing
a unique characterization thereof.”
Some authors entered the discussion, on my behalf, by suggesting meta-

physical principles that are weaker than Keränen’s individuation require-
ment but still meet Burgess’s demand that the theorist find something that
distinguishes distinct objects. The idea, it seems, is that one can distinguish
objects without individuating them. The weakest of these requirements is
a thesis that for any a, b, if a 6= b then there is an irreflexive relation R
such that Rab (Ladyman, 2005). Complex analysis and Euclidean geometry
easily pass this test. For example, i and −i satisfy the irreflexive relation
of being additive inverse to each other and distinct from 0, and any pair of
distinct points in Euclidean space satisfy the irreflexive relation of determin-
ing exactly one straight line. Nevertheless, the finite cardinal structures and
some graphs still fail the test, unless non-identity counts as an irreflexive
relation (in which case, of course, we do not have a substantial test).
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I wish to put aside these metaphysical matters here, at least as far as
possible. There are some related and, I think, more interesting issues con-
cerning the semantics and pragmatics of mathematical languages, and per-
haps languages generally. These issues also bear on logic, and they go well
beyond local disputes concerning ante rem structuralism. How do we man-
age to talk about, and thus, in some sense, refer to indiscernible objects?
I do not intend to offer a detailed solution to this semantic problem here,
just to highlight it and indicate its generality. A solution, I believe, would
involve an extended foray into linguistics, the philosophy of language, and
the philosophy of logic.
To be sure, the whole project presupposes that there are indiscernible

objects, and this presupposes that the metaphysical principles adopted by
some of my opponents are false. I also do not intend to argue for that in
detail here (but see (Shapiro, 2008) and related work cited there). The
informal language of complex analysis has a term i which is supposed to
denote one of the square roots of −1. At least grammatically, i is a constant,
a proper name. And the role of a constant is to denote a single object — at
least in a sufficiently regimented language. But which of the square roots
does i denote? Is it not as if the mathematical community has managed to
single out one of the roots, in order to baptize it with the name “i”. They
cannot do so, as the two roots are indiscernible.
Gottlob Frege (1884) seems to have noted our problem:

We speak of ‘the number 1’, where the definite article serves to class
it as an object (§ 57). If, however, we wished to use [a] concept for
defining an object falling under it [by a definite description], it would,
of course, be necessary first to show two distinct things:

that some object falls under the concept;
that only one object falls under it (§ 74n).

Nothing prevents us from using the concept ‘square root of −1’; but
we are not entitled to put the definite article in front of it without
more ado and take the expression ‘the square root of −1’ as having a
sense. (§ 97)

Complex analysis is perhaps the most salient example of the logical-
semantic phenomenon in question, but there are a some others, at least
if we go with a straightforward reading of various mathematical languages
(see (Brandom, 1996)). Consider, for example, the integers, with addition
as the only operation. It is, of course, an Abelian group, whose elements
are:

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .
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In the relevant language, the operation that takes any integer a to −a is
an automorphism. So anything in the relevant language that holds of an
integer a also holds of −a. In this structure, then, 1 is indiscernible from
−1, but, of course, 1 is distinct from −1. Another example is the Klein
group. It has four elements, which are usually called e, a, b, and c, and
there is one operation, given by the following table:

c b a e

b c e a

a e c b

e a b c

It is easy to verify that any function f that is a permutation on the four
elements such that fe = e is an automorphism. The three non-identity
elements are thus indiscernible, in the language of groups, and yet there are
three such elements and not just one. But which one is a?
Category theory is rampant with examples of the phenomenon under

study here. The main reason for this, it seems, is that every categorical
notion is preserved under isomorphism. To take one instance, an object O
in a category is called terminal, if for any object A in the category, there
is exactly one map from A to O. In categories with a terminal object, it is
common to introduce a term “1” for such an object. It is trivial to show
that any two terminal objects are isomorphic. Indeed, if 1 and 1′ are both
terminal, then there is exactly one map from 1 to 1′ and exactly one map
from 1′ to 1. These two maps must compose to an identity map — either
the unique map from 1 to 1, or the unique map from 1′ to 1′, depending on
the order of composition. Moreover, any object isomorphic to a terminal
object is itself terminal. So if a category has a terminal object, it usually
has many. In the category of sets, for example, any singleton is terminal.
Which of them is the terminal object of the category, the one picked out by
the term “1”? The answer, of course, is that it does not matter — just as it
does not matter which square root of −1 is i. And, here too, “1” functions
as a singular term, at least as far as syntax goes.
In a category with a terminal object, it is common to define an element

of an object A to be a map from 1 to A. So, it would seem, to know which
maps are the elements of A, we have to know which object is 1. In a sense,
we can’t know this, but, again, it does not matter. In like manner, a product
of two objects A, B is an object, usually written A×B, and a pair of maps,
one from A × B to A and one from A × B to B, that satisfies a certain
universal property. Again, products are not usually unique: any object
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isomorphic to a product of A and B can itself be shown to be a product
of A and B. Nevertheless, the “×” symbol seems to be a function symbol,
and it is common to talk about A × B as the product of A and B — just
as it is common to talk about i as the square root of −1.
There is a related phenomenon concerning the use parameters or free vari-

ables in mathematical discourse. Those act like singular terms in context,
but often fail uniqueness. Suppose that in the course of a demonstration, a
geometer says “let ABCD be any parallelogram, with the line AB congru-
ent and parallel to the line CD.” It follows that the pair of points A, B,
(and the line segment AB) are indiscernible from the pair C, D (and the
segment CD). Anything one can say about one of the pairs (and one of the
segments) will be true of the other pair (and the other segment). So which
one is AB and which one is CD?

2 Indiscernibility, semantics, and expressive resources

To say that two objects are indiscernible is to say that they cannot be told
apart. This brief characterization suggests that indiscernibility is relative.
Two balls may be visually indiscernible to someone who is color blind while
being discernible to someone with more normal vision. In the present con-
text, indiscernibility is relative to expressive resources. Two mathematical
objects may be indiscernible with some batch of resources, but discernible
once expressive resources are added. In the case of the integers, for ex-
ample, 1 and −1 are discernible if one can invoke multiplication: 1 is the
multiplicative identity and −1 is not.
At the outset, I formulated the issue in terms of rigid structures, with

“rigidity” defined in terms of automorphisms. This registers the relativity
to expressive resources as well, since “automorphism” is itself defined in
terms of the background language: all of the primitive relations must be
preserved.
Suppose, then, that we just add a constant i to the official language of

complex analysis, with the obvious axiom i2 = −1. Then, technically, the
structure becomes rigid: there are no non-trivial automorphisms. The rea-
son is that isomorphisms must preserve all of the structure in the language,
and, in particular, it must preserve the denotations of the constants. If f
is an isomorphism between M1 and M2, in the language of arithmetic, for
example, then if the constant “0” denotes a inM1, then “0” must denote fa
in M2. Similarly, let N be any model of complex analysis, in the envisioned
language with a constant “i”, and let f be an automorphism. If “i” denotes
a in N , then “i” denotes fa in N . That is, a = fa. It follows that for each
element b in the domain, fb = b. So f is trivial.



236 Stewart Shapiro

Nevertheless, it seems to me that, in the relevant intuitive sense, the two
square roots of −1 are still indiscernible, even in this language. Let N ′ be
a model of the theory that is just like N , except that in N ′, “i” denotes −a
(and thus “−i” denotes a). Technically, N is not isomorphic to N ′, for the
above reason. However, it seems to me that the two models are equivalent,
in the intuitive sense. Both have the same domain and they agree on the
operations. In particular, in each model, the same two objects are the roots
of −1. The only difference between them is that N calls one of them “i”:
and N ′ calls the other one “i”. It seems to me that this is not a significant
difference — not unless we add some structure to the naming relation.
To develop this point a bit, let us go up a level, so to speak, and think

of the semantic relations themselves in formal, or structural terms. Begin
with a simple graph that has two nodes and no edges. As noted above,
this structure is completely homogeneous. Now add two new objects, a, b,
and a relation R to the structure. The new item a bears R to one of the
nodes in the original graph and b bears R to the other node. This is the
structure of some very simple semantic relations on the graph: think of a
and b as names, and R as the reference relation. This mathematical-cum-
semantic structure is not rigid. If we modify it by switching the “referents”
of a and b, we get an automorphism. And, intuitively, we have not really
changed the extended structure with this switch. It is still the same simple
graph with the same two new objects, the same relation R, and the same
structural–semantic relations.
We can do the same with our more standard mathematical example.

Consider a structure M that includes the places and relations of our model
N , of complex analysis. In addition,M has nodes representing the primitive
terms of the language of complex analysis (“0”, “i”, “+”, “A”), and a
relation R representing reference. So, for example, Rix would be an atomic
formula in the envisioned object language, saying that the constant “i” refers
to, or denotes, x. The theory would include the axioms of complex analysis
(over N) and the Tarskian satisfaction clauses between the “terms” (“0”,
“i”, “+”, “A”) and the relevant items constructed from N . So, for example,
our structure would satisfy ∀x∀y((Rix&Riy) → x = y) and Ria (recalling
that a is one of the square roots of −1 in N).
This mathematical-cum-semantic structure is not rigid. The function

that takes x+ay to x−ay (within N), takes each “term” (“0”, “1”, “i”, “+”,
“A”) to itself, and adjusts the relation R accordingly, is an automorphism.
We still have a model of complex analysis, as above, and all of the Tarskian
satisfaction clauses are still satisfied (see (Leitgeb, 2007, pp. 133–134)). The
problem, here, is to say something about the semantics and logic of the
languages of mathematics, so construed.
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3 The identity of indiscernibles

The issues here are related to those in Max Black’s (1952) celebrated discus-
sion of the identity of indiscernibles. The paper is in the form of a dialogue.
One character, A, takes the identity of indiscernibles to be “obviously true”,
while the opponent, B, takes it to be “obviously false”. The latter gives a
thought experiment meant to refute the principle in question:

Isn’t it logically possible that the universe should have contained noth-
ing but two exactly similar spheres? We might suppose that each was
made of chemically pure iron, had a diameter of one mile, that they
had the same temperature, color, and so on, and that nothing else
existed. Then every quality and relational characteristic of the one
would also be a property of the other. (Black, 1952, p. 156)

Black’s two spheres are analogous to the two square roots of −1. Of course,
I am not claiming that there is a possible world which consists of just these
two complex numbers. But the rest of the analogy holds, at least in the
language of complex analysis.
The main thrust of (Black, 1952) is metaphysical and, as noted above,

such matters are being put aside here as much as possible. Along the way,
however, the article broaches the logico-semantic issues of present concern.
The defender of the indiscernibility of identicals, A, first denies that B has
described a coherent possibility, and then continues, “But supposing that
you have described a possible world, I still don’t see that you have refuted
the principle. Consider one of the spheres, a.” At this point, B interrupts,
protesting: “How can I, since there is no way of telling them apart? Which
one do you want me to consider?”. That is, B refuses to let his opponent use
a variable, a parameter, or a singular term for one of the spheres. Character
A responds: “This is very foolish. I mean either of the two spheres, leaving
you to decide which one you wished to consider.” In our case, it strikes
me as eminently reasonable to say, “let i designate one of the square roots
of −1. I don’t care which.” The present problem is to make sense of this
locution. Character B denies that it can be made sense of.
Robert Brandom (1996, p. 298) puts our problem in similar terms:

Now if we ask a mathematician ‘Which square root of −1 is i?,’ she
will say ‘It doesn’t matter: pick one.’ And from a mathematical point
of view this is exactly right. But from the semantic point of view, we
have the right to ask how this trick is done — how is it that I can
‘pick one’ if I can’t tell them apart? What must I do in order to be
picking one, and picking one? For we really cannot tell them apart
— and. . . not just because of some lamentable incapacity of ours.
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The next exchange in Black’s dialogue puts some detail to the differing
semantic presuppositions. Character A, the proponent of the (obvious truth
of) the identity of indiscernibles, continues, “If I were to say to you ‘Take
any book off the shelf’ it would be foolish on your part to reply ‘Which?’.”
B retorts: “It’s a poor analogy. I know how to take a book off a shelf, but
I don’t know how to identify one of the two spheres supposed to be alone
in space. . . ” It seems that, for the purposes of this argument, B claims
that one cannot use a singular term to designate an object without first
“identifying” it, or at least knowing how to identify one of the objects in
question. That, I take it, is the matter at hand here, whether it is possible
to introduce a lexical item to refer to an indiscernible object. The character
A takes the bait: “Can’t you imagine that one sphere has been designated
as ‘a’?” The dialogue continues:

B. I can imagine only what is logically possible. Now it is logically
possible that somebody should enter the universe I have described,
see one of the spheres on his left hand and proceed to call it ‘a’. . .

A. Very well, now let me try to finish what I began to say about a. . .
[ellipsis in original]

B. I still can’t let you, because you, in your present situation, have
no right to talk about a. All I have conceded is that if something were
to happen to introduce a change in my universe, so that an observer
entered and could see the two spheres, one of them could then have
a name. But this would be a different supposition from the one I
wanted to consider. My spheres don’t yet have names. . . You might
just as well ask me to consider the first daisy in my lawn that would
be picked by a child, if a child were to come along and do the picking.
This doesn’t now distinguish any daisy from the others. You are just
pretending to use a name.

A. And I think you are just pretending not to understand me.

4 Is this a problem?

What seems to matter here, at a minimum, is one’s philosophy of math-
ematics, and one’s account of reference. If someone has a philosophy of
mathematics that accepts a principle of the identity of indiscernibles, and
also accepts a certain naive account of what indiscernibility comes to, then
he will not allow the foregoing, implicit characterization of the complex
numbers as the algebraic closure of the reals (or as the structure character-
ized by the standard axiomatization). That very characterization violates
the identity of indiscernibles, since it introduces two distinct objects that
cannot be told apart. The same goes for the other examples, the integers
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under addition, the Klein group, and all of category theory. The philosopher
who accepts these strictures will not face the foregoing problem of reference
— since there is no such problem on that view — but she will need some
other account of the various structures and theories.
One way to avoid the problem is to break the symmetry. Whether one

accepts the identity of indiscernibles or not, one can think of complex num-
bers as pairs of reals, following a now common mathematical technique. In
that case, i is the pair 〈0, 1〉 and −i is 〈0,−1〉. Since one can distinguish 1
from −1 in the reals, and thus in the second coordinate, there is no problem
distinguishing those two pairs.
The problem with complex analysis, however, at least appears to be

robust — liable to reappear. The custom nowadays is to use polar coor-
dinates, in which case i is

〈
1, π

2

〉
and −i is

〈
1, 3π

2

〉
. So it now becomes a

matter of distinguishing those pairs from each other. This, in turn, becomes
a matter of distinguishing the angle π

2 from the angle
3π
2 . And how does

one do that? Well, we can say that the first is positive and the second is
negative; or that the first goes counterclockwise and the second clockwise;
or that the first is above the x-axis and the second below it. But when
it comes to angles, “positive–negative”, “counterclockwise–clockwise”, and
“above–below” all point to symmetries — automorphisms of the plane. So
it seems that the indiscernibility has returned. To break the symmetry in
the complex numbers, we need to break the symmetry in the plane.
As noted above, one can break the symmetry in the integers under ad-

dition by thinking of that as a substructure of the integers under addition
and multiplication. There is no problem distinguishing 1 from −1 in that
structure. And perhaps one can deny that there is such a thing as the Klein
group. Instead, there are a number of Klein groups. In each such group, the
four elements are properly individuated. One would have to give a similar
interpretation of the languages invoked in category theory. One might just
break the symmetry globally — once and for all — by insisting that the
ontology of all of mathematics is the iterative hierarchy, or some other rigid
structure.
All this could be done, of course. The technical resources required are

well-known. Notice, however, that the need to break the symmetry involves
reinterpreting the languages of mathematics. One question would concern
how natural the reinterpretations are, as readings of the original languages
of mathematics.
I suspect that there would not be a problem for Frege concerning our

issue. As noted above, he demanded two things before one could use the
definite article in a properly rigorous mathematical treatment. One has to
show “that some object falls under” the concept in question, and the other is
“that only one object falls under it” (Frege, 1884, § 74n). It would not do, for
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Frege, to simply declare that the complex numbers are the algebraic closure
of the reals, or even to say that we are interested in an algebraic closure of
the reals. In doing this, we would fail the first requirement, of showing that
some object falls under the concept “square root of −1”. How do we know
that there are any algebraic closures of the real numbers? Presumably, Frege
would have given an explicit definition of the complex numbers, perhaps as
pairs of reals (which, in turn, would be defined in terms of certain courses-
of-values).2 This explicit definition would presumably break the symmetry
between i and −i. If it didn’t, then the account would fail Frege’s second
requirement, “that only one object falls under” the concept. In that case,
Frege would not allow the use of the definite article.
Consider, next, a nominalist, a philosopher who denies the existence of

mathematical objects. On such views, mathematics has no distinct ontology.
Then the devil is in the details of the view. I do not see an issue here for
a fictionalist, one who likens mathematics to make-believe. One can surely
tell a coherent story about objects that are indiscernible as far as the details
provided by the story go (Black’s character B notwithstanding). Consider,
for example, the following short story: “One day, two people met, fell in
love, and lived together, happily ever after.” Whatever its literary merits,
this is surely a coherent piece of fiction. In both cases, there is nothing in the
story to distinguish the characters. Anything in the language of the story
that holds of one also holds of the other. And, of course, we have nothing
to go on besides the details of the story, plus common knowledge of human
psychology, naming conventions, and the like. Consider this variation on
our story: “One day, Chris met Kelly. They fell in love, and lived together,
happily ever after.” One might claim that, here, Chris is distinguished
from Kelly because he or she is the one who is called “Chris” in that story.
But, as with complex analysis, this does not seem like a distinction that
matters. To be sure, there are interesting issues concerning the semantics
and, perhaps, the ontology and metaphysics of fiction, but I do not propose
to enter that realm here.
Reconstructive nominalists provide translations of mathematical lan-

guages into vocabulary that does not commit the mathematician to the
existence of mathematical objects. Typically, singular terms and bound
variables in mathematical languages are rendered as bound variables within
the scope of modal operators. Instead of speaking of what exists, the re-
constructive nominalist speaks of what might exist (as in Geoffrey Hellman
(1989)), what can be constructed (ala Charles Chihara (1990)), or what fol-
lows from axioms, or whatever. Whether an issue analogous to the present

2Thanks to Michael Dummett for some key insights. One must be speculative here, since
Frege only gave the barest hints at how real analysis is to fit into his logicist program
(see, for example, (Simons, 1987)).
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one arises depends on the details of the translation, and I propose to avoid
that as well.3

Suppose, finally, that someone does accept the existence of mathematical
objects — contra nominalism — and agrees that in some cases, distinct
objects are indiscernible — contra the program of symmetry-breaking-via-
reinterpretation. For present purposes, it does not seem to matter what the
metaphysical nature of these mathematical objects may be. Our philosopher
may be a traditional platonist, or she may hold that mathematical objects
are somehow mental constructions, or that they are social constructs, or
whatever else the philosopher dreams up. Our philosopher may even be
a quietist about mathematical ontology, insisting that the only things to
say about them are what follows from the mathematical theories. All that
matters, for now, is that the languages be understood literally, and that
some numerically distinct objects are indistinguishable.
Without much loss of generality, we might as well keep on with our

standard example: our philosopher holds that the complex numbers exist,
that the square roots of −1 are indiscernible, and that there is a role played
by the term “i”. Then our problem arises. He must either come up somehow
with a referent for ‘i’, which would be to break the symmetry, or else he
must describe the logico-semantic role of that term.
This is not the place to attempt to solve the present problem. That is a

matter for future work which, I believe, involves substantial themes in se-
mantics, pragmatics, and logic, both for the languages of mathematics and
for natural languages generally. What is the role and function of singular
terms (or linguistic items that look and function like singular terms), and
how do such terms get introduced into the language? The purpose of the
present article is to articulate the issue, and to delimit the range of philoso-
phers of mathematics for whom it is a substantial issue. At the very least,
I hope to have convinced the gentle reader that it is not a problem local to
ante rem structuralism.

Stewart Shapiro
Department of Philosophy, The Ohio State University
350 University Hall, 230 North Oval Mall, Columbus, Ohio 43210, USA
shapiro.4@osu.edu

3Chihara’s (1990) modal constructivism is an interesting case here. Accordingly, a sin-
gular term, such as a numeral, represents the possibility of constructing an open sentence
with certain semantic features. So one can wonder which open sentence would corre-
spond to “i, as opposed to the open sentence that corresponds with “−i”. I presume that
Chihara would liken complex numbers to pairs of reals, as above. This would avoid the
(analogue of) the present problem, by breaking the symmetry.
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Sequent Calculi and

Bidirectional Natural Deduction:

On the Proper Basis of Proof-theoretic Semantics

Peter Schroeder-Heister∗

Philosophical theories of logical reasoning are intrinsically related to formal
models. This holds in particular of Dummett–Prawitz-style proof-theoretic
semantics and calculi of natural deduction. Basic philosophical ideas of this
semantic approach have a counterpart in the theory of natural deduction.
For example, the “fundamental assumption” in Dummett’s theory of mean-
ing (Dummett, 1991, p. 254 and Ch. 12) corresponds to Prawitz’s formal
result that every closed derivation can be transformed into introduction
form (Prawitz, 1965, p. 53). Examples from other areas in the philosophy
of logic support this claim.
If conceptual considerations are genetically dependent on formal ones,

we may ask whether the formal model chosen is appropriate to the intended
conceptual application, and, if this is not the case, whether an inappropriate
choice of a formal model motivated the wrong conceptual conclusions. We
will pose this question with respect to the paradigm of natural deduction
and proof-theoretic semantics, and plead for Gentzen’s sequent calculus as a
more adequate formal model of hypothetical reasoning. Our main argument
is that the sequent calculus, when philosophically re-interpreted, does more
justice to the notion of assumption than does natural deduction. This is
particularly important when it is extended to a wider field of reasoning than
just that based on logical constants.
To avoid confusion, a terminological caveat must be put in place: When

we talk of the sequent calculus and the reasoning paradigm it represents,
we mean, as its characteristic feature, its symmetry or bidirectionality, i.e.,

∗This work has been supported by the ESF EUROCORES programme “LogiCCC —Mod-
elling Intelligent Interaction” (DFG grant Schr 275/15–1) and by the joint German-French
DFG/ANR project “Hypothetical Reasoning: Logical and Semantical Perspectives”(DFG
grant Schr 275/16–1). I would like to thank Luca Tranchini and Bartosz Więckowski for
helpful comments and suggestions.
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the fact that it uses introduction rules for formulas occurring in different
positions. We do not assume that these positions are syntactically repre-
sented by the left and right sides of a sequent, i.e., we do not stick to the
sequent format which gave the calculus its name. In particular, we propose
a natural-deduction variant of the sequent calculus called bidirectional nat-
ural deduction, which embodies the basic conceptual features of the sequent
calculus.1 Conversely, the natural-deduction paradigm to be criticized is
the reasoning based on (conventional) introduction and elimination infer-
ences, even though it can be given a sequent-calculus format as in so-called
“sequent-style natural deduction”.2 The conceptual meaning of natural de-
duction vs. sequent calculus, which we try to capture by the notions of
unidirectionality vs. bidirectionality, is to be distinguished from the par-
ticular syntax of these systems. We hope it will always be clear from the
context whether a conceptual model or a specific syntactic format is meant.
We do not claim originality for the translation of the sequent calculus

into bidirectional natural deduction. This translation is spelled out in detail
in (von Plato, 2001). The system itself has been known much longer.3 Here
we want to make a philosophical point concerning the proper concept of
hypothetical reasoning that also pertains to applications beyond logic and
logical constants. The term “bidirectional natural deduction” seems to us
to be a very appropriate characterization of the system considered. To our
knowledge, it has not been used before.4

1 Assumptions in natural deduction

In a natural-deduction framework, there are essentially two things that can
be done with assumptions: introducing and discharging. If we introduce an
assumption

A
...

1Other variants would be Schütte-style systems with metalinguistically specified right and
left parts of formulas (Schütte, 1960) or even Frege-style systems, see (Schroeder-Heister,
1999).
2First suggested by Gentzen in (Gentzen, 1935), though not under that name.
3 See, for example, (Tennant, 1992), (Tennant, 2002). For a brief history see (Schroeder-
Heister, 2004, p. 33) (footnote). Unfortunately, the earliest proposal of this system
(Dyckhoff, 1988) was accidentally omitted there.
4Von Plato (2001) simply speaks of “natural deduction with general elimination rules”,
which can also be understood in the unidirectional way (depending on the treatment
of major premisses of elimination inferences). — The term “bidirectional” came up in
personal discussions with Luca Tranchini on the proper treatment of negation in proof-
theoretic semantics, a topic which is closely related to bidirectional reasoning. See his
contribution to this volume (Tranchini, 2009).
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then we make the derivation below A dependent on that assumption, and
if we discharge it at an application of an inference

(n)

A
...
B (n)
C

we retract this dependency, so that the conclusion of that inference is not
longer dependent on A. As proposed in (Prawitz, 1965), the numeral n
indicates the link between assumptions and inferences at which they are
discharged. Other notations are Fitch’s (Fitch, 1952) explicit notation of
subproofs, which goes back to (Jaśkowski, 1934), where the idea of discharg-
ing assumptions was developed even before (Gentzen, 1934/35).
Introducing and discharging assumptions is not very much one can do.

Especially, there are no operations that change the form of an assumption
and therefore have to do with its meaning. In this sense, they are purely
structural operations. However, it is definitely more than can be done in
Hilbert-type calculi, where we have at best the introduction of assumptions
but never their discharging. In Hilbert-type systems assumptions can never
disappear by means of a formal step. However, we can metalinguistically
prove that we can work without assumptions by using them as the left side
of a conditional statement. This is the content of the deduction theorem: If,
in a Hilbert-type system, we have derived B from A, we can instead derive
A→B by an appropriate transformation of the derivation of B from A.
Since in natural deduction we have the discharging of assumptions as

a formal operation at the object level, we can express the content of the
deduction theorem as a formal rule of implication introduction:

(n)

A
...
B (n)

A→B

Although this is an important step beyond Hilbert-type calculi, it is not
all that can possibly be done in extending the expressive power of formal
systems. Our claim is that a genuinely semantic treatment of assumptions
is more appropriate than a purely structural one as in natural deduction.
In natural deduction, assumptions have a close affinity to free variables:

Assumptions which are not discharged are called open, whereas discharged
assumptions are called closed. This terminology is justified since undis-
charged assumptions are open for the substitution of derivations whose end
formula is the assumption in question, whereas closed assumptions are not.
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Given a derivation
A
D
B
with the open assumption A and a derivation

D1

A
of

A, then
D1

A
D
B

is a derivation of B which may be considered a substitution instance of the
original derivation. In this sense an open derivation corresponds to an open
term, and a closed derivation, i.e. a derivation without open assumptions,
corresponds to a closed term. This relationship between open and closed
proofs and open and closed terms can be made formally explicit by a Curry–
Howard-style association between terms and proofs, where the discharging
of assumptions becomes a formal binding operation.

In our example, the derivation
D1

A
can itself be open, just like a variable

which is substituted with an open term. So in the formal concept of natural
deduction and the composition of derivations there is no primacy of closed
derivations over open ones. However, this primacy enters with the philo-
sophical interpretation of natural deduction in the tradition of Dummett
and Prawitz. There open assumptions are interpreted as placeholders for
closed proofs.5

2 Assumptions in Dummett-Prawitz-style
proof-theoretic semantics

Proof-theoretic semantics as advanced by Dummett and Prawitz6 was
framed by Prawitz in the form of a definition of validity of proofs, where
a proof corresponds to a derivation in natural-deduction form. According
to this definition, closed proofs in introduction form are primary as based
on “self-justifying” steps, whereas the validity of closed proofs not in in-
troduction form as well as the validity of open proofs is reduced to that
of closed proofs using certain transformation procedures on proofs, called
“justifications”. Given a notion of validity for atomic proofs (i.e. proofs
of atomic sentences), the definition of validity for the case of conjunction
and implication formulas (to take two elementary cases) can be sketched as
follows:

5Here we switch terminology from “derivation” to “proof”, as in the semantical interpre-
tation we are no longer dealing with purely formal objects, for which we reserve the term
“derivation”. Prawitz himself often speaks of “arguments” to avoid formalistic connota-
tions still present with “proof”.
6For an overview of this sort of semantics see (Schroeder-Heister, 2006) and the references
therein.
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• A closed proof of an atomic formula A is valid if there is a valid atomic
proof of A.

• A closed proof of A∧B in the introduction form
D1

A

D2

B
A∧B

is valid if the subproofs D1 and D2 are valid closed proofs of A and
B, respectively.

• A closed proof of A→B in the introduction form

(n)

A
D
B (n)
A→B

is valid if for every closed proof
D1

A
of A, the closed proof

D1

A
D
B

of B is valid.

• A closed proof of A not in an introduction form is valid if it reduces,
by means of the given justifications, to a valid closed proof of A in an
introduction form.

If we are only interested in closed proofs, this definition is sufficient. In
view of the last clause, it is a generalized inductive definition proceeding on
the complexity of end formulas and the reduction sequences generated by
justifications. If we also want to consider open proofs, we would have to
define:

• An open proof
A1, . . . , An

D
B

is valid if for all closed valid proofs

D1

A1
,. . . ,
Dn

An

, the proof

D1 Dn

A1, . . . , An

D
B

is a valid closed proof.

Given this clause for open proofs, the defining clause for the validity of a
closed proof of A→B in introduction form might be replaced with



250 Peter Schroeder-Heister

• A closed proof of A→B in the introduction form

(n)

A
D
B (n)

A→B

is valid if its immediate open subproof

A
D
B

is valid,

yielding a uniform clause for all closed proofs in introduction form. However,
this way of proceeding makes the definitions of validity of open and closed
proofs intertwined, which obscures the fact that there is an independent
definition of validity for closed proofs.
According to this definition, closed proofs are conceptually prior to open

proofs. Furthermore, assumptions in open proofs are considered to be place-
holders for closed proofs, as the validity of open proofs is defined by the
validity of their closed instances obtained by substituting a free assump-
tion with a closed proof of it. So we have identified two central features of
standard proof-theoretic semantics:

The primacy of closed over open proofs (α)

The placeholder view of assumptions (β)

The definition of validity shows a further feature which is connected to (α)

and (β). The fact that in an open proof
A
D
B
the open assumption A is a

placeholder for closed proofs
D1

A
of A, yielding a closed proof

D1

A
D
B

means that the validity of
A
D
B
is expressed as the transmission of validity

from [the closed proof] D1 to [the closed proof]

D1

A
D
B
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If one considers an open proof
A
D
B
to be a proof of the consequence statement

that B holds under the hypothesis A, this expresses

The transmission view of consequence (γ)

i.e., the idea that the validity of a consequence statement is based on the
transmission of the validity of closed proofs from the premisses to the con-
clusion. This idea is closely related to the classical approach according to
which hypothetical consequence is defined as the transmission of categorical
truth (in a model) from the premisses to the conclusion. In that respect,
Dummett–Prawitz-style proof-theoretic semantics does not depart from the
classical view present in truth-condition semantics (see (Schroeder-Heister,
2008b)). Of course, there are fundamental differences between the classical
and constructive approaches, which must not be blurred by this similarity,
in particular with respect to epistemological issues (see (Prawitz, 2009)).7

A further point showing up in the definition of validity is the assumption
of global reduction procedures for proofs (called “justifications”). This is
what makes the (generalized) induction on the reduction sequence for proofs
possible. It is assumed that it is not individual valid proof steps that gen-
erate a valid proof, but the overall proof which may reduce to a proof of a
particular form (viz., a proof in introduction form). We call this

The global view of proofs (δ)

These four features are intimately connected to the model of natural de-
duction as its formal background. This holds especially for (β) and (δ),
which specify (α) and (γ), respectively. Natural deduction permits to place
a derivation on top of another one, and it is natural deduction where we
have the notion of proof reduction. In the sequent calculus, this sort of
connection is not present.
In the sequent calculus, logical inferences not only concern the right side

of a sequent (corresponding to the end formula in natural deduction) but the
right and left sides of sequents likewise. In this sense the sequent calculus is

7 It might be mentioned that the definition of validity for a closed proof of A→B is closely
related to Lorenzen’s admissibility interpretation of implication. According to (Lorenzen,

1955), A→B expresses the admissibility of the rule
A

B
. The claim that every closed

proof of A can be transformed into a closed proof of B can be viewed upon as expressing
admissibility. At first glance, this contradicts the fact that in natural deduction an open

proof

A
...
B

is a proof of B from A and should as such be distinguished from an admissibility

statement. However, even if, in the formal system, we are dealing with proofs from
assumptions rather than admissibility statements, the semantic interpretation in terms of
validity comes very close to the admissibility view. See (Schroeder-Heister, 2008a).
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inherently bidirectional compared to the unidirectional formalism of natural
deduction that underlies Dummett–Prawitz-style proof-theoretic semantics.
In the following we will make a case for the bidirectional framework.

3 The sequent calculus and bidirectional natural deduction

According to the traditional, i.e. pre-natural-deduction reasoning model, we
start with true sentences and proceed by inferences which lead from true
sentences to true sentences. This guarantees that we always stay in the
realm of truth.8 Alternatively, we could start with assumptions and assert
sentences under hypotheses. This is the background of natural deduction.
Natural deduction adds the feature of discharging assumptions, i.e., the
dependency on assumptions may disappear in the course of an argument.
In this way the dynamics of reasoning not only affects assertions but at
the same time the hypotheses assumed. However, this dynamics is very
limited as the only options are introducing and discharging, so there is no
more than a yes/no attribution to hypotheses. We cannot introduce and
eliminate assumptions according to their specific meaning, which would be
a more sophisticated dynamics. In this sense reasoning in standard natural
deduction is assertion centred and unidirectional. This is even more so, as
the hypotheses assumed are placeholders for closed proofs.9

A genuinely different model is given by the sequent calculus. The par-
ticular feature of this system, i.e. introduction rules on the left side of the
sequent sign, can be philosophically understood as the meaning-specific in-
troduction of assumptions. Consider conjunction with left sequent rules

Γ, A⊢C
Γ, A∧B ⊢C

Γ, B ⊢C
Γ, A∧B ⊢C

These rules can be interpreted as follows: Suppose we have asserted C under
the hypotheses Γ and A. Then we may claim C by assuming A∧B as an
assumption and discharging A as an assumption, and similarly for B. Writ-
ten in natural-deduction style this corresponds to the general elimination
rules for conjunction

A∧B

(n)

A
...
C (n)

C
A∧B

(n)

B
...
C (n)

C
8This was, for example, the picture drawn by Bolzano and Frege.
9This is not essentially changed if we replace assertion with denial and in this sense
dualize natural deduction. Unidirectionality would just point into the opposite direction.
See (Tranchini, 2009).
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but with the crucial modification that the major premiss must now be an
assumption, i.e., must occur in top position10 (this is here indicated by the
line over the major premiss). Similarly, the left implication rule

Γ⊢A Γ, B ⊢C
Γ, A→B ⊢C

is interpreted as follows: Suppose we have asserted both A under the hy-
potheses Γ, and C under the hypotheses Γ and B. Then we may claim
C under the assumption A→B instead of B, i.e., discharge B and assert
A→B instead. Written in natural-deduction style, this yields the general
→ -elimination rule

A→B A

(n)

B
...
C (n)

C

again with the crucial difference to the standard general elimination rule
that the major premiss occurs in top position.11

By presenting the sequent-calculus rules in a natural-deduction frame-
work we are no longer working in “standard” or “genuine” natural deduc-
tion but in the reasoning model suggested by the sequent calculus, as the
restriction on major premisses of elimination rules runs counter to the way
premisses are treated in standard natural deduction. We call this modified
system bidirectional natural deduction as it acts on both the assertion and
the assumption side, with rules that depend on the forms of the formulas as-
sumed or asserted. So the possible operations on assumptions are no longer
merely structural.12

In proposing bidirectional natural deduction, as a natural-deduction-style
variant of the sequent calculus, as our model of reasoning, we establish a
symmetry between assertions and assumptions. Like assertions, assump-
tions can be introduced according to their meaning, namely as major pre-
misses of elimination inferences. By imposing the restriction that major
premisses must always be assumptions, elimination inferences receive an

10 In Tennant’s (Tennant, 1992) terminology, the major premiss “stands proud”.
11A translation between sequent calculus and natural deduction with general elimination
rules is carried out in full detail in (von Plato, 2001). Note that for implication, we are
here considering the general elimination rule used by von Plato, as they correspond to
the left sequent calculus rule, rather than the more powerful one proposed in (Schroeder-
Heister, 1984), which extends the standard framework of natural deduction with rules as
assumptions.
12We also call it “natural-deduction-style sequent calculus”, as it is conceptually a sequent
calculus which is presented in the form of a natural deduction system (Schroeder-Heister,
2004). In (Negri & von Plato, 2001), this term is used in a different sense, meaning a
specific form of the sequent calculus.
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entirely different reading. They are no longer justified by reference to the
way the major premiss can be (canonically) derived. They are rather viewed
as ways of introducing complex assumptions, given the derivations of the
minor premisses. Elimination inferences in bidirectional natural deduction
combine the introduction of an assumption with an elimination step and
can thus be viewed as a special form of assumption introduction. There-
fore we also call them “upward introductions”, as opposed to “downward
introductions” which are the common introduction rules.
Assumptions which are major premisses of elimination inferences are no

longer placeholders for closed proofs as they cannot be inferred by means
of an inference. They are always starting points of elimination inferences.

Of course, it might be possible to show that given a proof
D1

A
of A and

a proof
A
D2

B

of B from A, we can obtain a proof D
B
of B. However, this

would have to be established as a theorem corresponding to cut elimination
for the sequent calculus. It is no longer a trivial matter as in standard
(unidirectional) natural deduction, since

D1

A
D2

B

is no longer a well-formed proof if A is a major premiss of an elimination
inference. Therefore bidirectionality overcomes the placeholder view of as-
sumptions (β). With this it also overcomes the primacy of closed over open
proofs (α) as closed proofs are no longer used to interpret assumptions.
Only a premiss of an introduction rule can be viewed as a placeholder for a
closed proof, which means that the uniform interpretation of assumptions
by reference to closed proofs is given up.
The transmission view of consequence (γ) disappears as well. As assump-

tions can be introduced in the course of a proof (in the sequent calculus by
left introduction, in bidirectional natural deduction as the major premiss
of an elimination inference), it is no longer a defining feature of them that
they transform closed proofs into closed proofs. If this happens to be the
case, then it is “accidental” and has to be proved. The introduction of
an assumption is just as primitive as the introduction of an assertion. In
the terminology of Dummett–Prawitz-style proof-theoretic semantics, both
the introduction of an assertion and the introduction of an assumption is
a canonical, i.e. definitional step. More precisely, the distinction between
canonical and non-canonical steps disappears. In this sense the concept of
validity is much more rule-oriented than proof-oriented: We now consider a
proof to be valid if it consists of proper applications of right and left rules
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(in the sequent calculus) or downward and upward introduction rules (in
bidirectional natural deduction) rather than if it reduces to a proof in in-
troduction form for all its closed instances. In this way, the global view of
proofs (δ) also disappears, as it is based on the fundamental assumption
that proofs are primary to rules and that the validity of rules is based on
proofs and proof reduction. The idea of bidirectional reasoning is very much
local rather than global.13

This does not mean that right and left (sequent calculus), or downward
and upward (bidirectional natural deduction) introductions are unrelated to
each other. We will still require some notion of harmony between the two
sorts of inferences as an adequacy condition. However, this harmony will be
local rather than global, and not based on proof reduction. One criterion
would be uniqueness in the sense of (Belnap, 1961/62), which means that
if we duplicate rules for a constant ∗, yielding a constant ∗′ with the same
right (or downward) and left (or upward) rules, we can prove A[∗] ⊣⊢ A[∗′]
in the combined system. There A[∗] is any expression containing ∗, and
A[∗′] is obtained from A[∗] by replacing ∗ with ∗′. However, unlike Belnap,
we would not rely on conservativeness, as this is a global concept, but
rather on local inversion in the sense that the defining conditions for a
constant ∗ can be obtained back from this constant. Our main criticism
of Belnap’s proposal of conservativeness and uniqueness in his discussion of
the connective “tonk” is that he mixes a local condition (uniqueness) with
a global one (conservativeness).14

4 Why going local?

Why should we switch to a concept of hypothetical reasoning which is differ-
ent from the standard one characterized by (α)–(δ), and which is prevailing
both in classical and constructive semantics? The lack of an intuitive jus-
tification of the principles (α)–(δ) is no reason for abandoning them, if we
cannot also tell why the bidirectional alternative has greater explanatory
power. In fact, we gain access to a much wider range of phenomena, if we
stick to the bidirectional paradigm. We just mention two points.

Atomic reasoning and inductive definitions

The discussion in proof-theoretic semantics has traditionally focused on log-
ical constants. Logical constants are a particularly well-behaved case where
we can apply the global considerations characteristic of the standard ap-
proach. Natural-deduction-based proof-theoretic semantics has been devel-

13The local approach to hypothetical reasoning put forward here was originally proposed
by Hallnäs (Hallnäs, 1991, 2006).
14This point will be worked out elsewhere.



256 Peter Schroeder-Heister

oped as a semantics of logical constants. However, this focus is much too
narrow. Proof-theoretic definitions of logical constants just feature as par-
ticular cases of inductive definitions. Looking at inductive definitions as
basic structural entities that confer meaning to objects, the distinction be-
tween atomic and non-atomic (i.e. logically compound) objects disappears.
Most generally, we would deal with definitional clauses of the form

a⇐ C

where a is an object to be defined and C is a defining condition. Starting
with a definition of this kind, right (downward) and left (upward) introduc-
tion rules can be generated from this inductive definition in a canonical way,
representing a way of putting inductive definitions into action, and result-
ing in powerful closure and reflection principles. The form of definitional
clauses look like clauses in logic programming, and logic programs can be
viewed as particular cases of inductive definitions. We would even generalize
the framework set up by logic programming by considering clauses where
the body C of a clause may contain hypothetical statements and therefore
negative occurrences of defined objects. This goes beyond standard def-
inite Horn clause programming and even transcends the classical field of
logic programming with negation (Hallnäs & Schroeder-Heister, 1990/91).
It differs from systems investigated in (Martin-Löf, 1971) in that it is not
mainly directed at induction principles but rather the local inversion of
rules. Systems of this kind have recently been considered by Brotherston
and Simpson (Brotherston & Simpson, 2007), where also the relationship
between inversion-based reasoning and induction principles for iterated in-
ductive definitions is discussed. Considering inductive definitions in general
opens up a wider perspective at hypothetical reasoning which is no longer
based on logical constants. It can also integrate subatomic reasoning in
the sense of (Więckowski, 2008), where the validity of atomic sentences is
reduced to certain assumptions concerning predicates and terms.

Non-wellfounded phenomena

The global reductionist perspective underlying unidirectional natural deduc-
tion excludes non-wellfounded cases such as the paradoxes. The inductive
definition of validity expects that there is no loop or infinite descent in the
reasoning chain. However, in the case of the paradoxes, we have exactly this
situation. Our local framework can easily accommodate such phenomena.
For example, if we define p by ¬q and q in turn by p, then both p and q
are locally defined. The global loop is irrelevant for the local definition. In
such a situation we can no longer prove global properties of proofs such as
cut elimination, but this we do not require.
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As it is now a matter of (mathematical) fact rather than a definitional
requirement whether certain global properties hold, we do not rule out non-
wellfounded phenomena by definition. This is a great advantage, as it gives
us a better chance to understand them. Following (Hallnäs, 1991), we might
call this approach a partial approach to meaning. According to Hallnäs, this
would be in close analogy to recursive function theory, where it is a potential
mathematical result that a given partial recursive function is total, rather
than something that has to be established for the function definition to
make sense.
There are other applications of the local approach that we cannot men-

tion here such as the proper treatment of substructural issues, generalized
inversion principles, evaluation strategies in extended logic programs, etc.

5 Final Digression: Dialogues

We have pleaded for a bidirectional view of reasoning as it is incorporated
in Gentzen’s sequent calculus and can be given the form of bidirectional
natural deduction. As there are certain adequacy conditions governing such
a system that relate right/downwards and left/upwards rules with one an-
other, so that they are linked together in a certain way, we might ask of
whether it would be possible to obtain them from a single principle. One
possible answer might be the dialogical approach proposed by Lorenzen
(Lorenzen, 1960) and his followers. If one carries its ideas over to the case
of inductive clauses

a ⇐ C1

...

a ⇐ Cn

one would be lead to an approach where an attack on the defined object
a would have to be defended by a choice among the defining conditions
Ci, which are themselves attacked by choosing one of its components. The
distinction between right and left rules would then be obtained by strategy
considerations for and against certain atoms. In this way a more unified
approach could be achieved. The dialogical motivation, as based on local
attack and defence rules, would not involve global reductive features com-
pared to validity notions in standard proof-theoretic semantics. Therefore,
it appears to be more faithful to our local approach, as the global per-
spective is only introduced at a later stage in terms of strategies and their
transformations. In this way the dialogical research programme promises a
novel perspective at the local/global distinction.
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Yearbook 2007 (pp. 267–285). Prague: Filosofia.





Relatives of Robinson Arithmetic

V́ıtězslav Švejdar∗

1 Introduction: numbers, or strings?

Robinson arithmetic Q was introduced in (Tarski, Mostowski, & Robinson,
1953) as a base axiomatic theory for investigating incompleteness and un-
decidability. It is very weak, but all its recursively axiomatizable consistent
extensions are both incomplete and undecidable. In logic textbooks, it often
plays the role of the weakest reasonable theory with this property.
A. Grzegorczyk recently proposed to study the theory of concatenation

as a possible alternative theory for studying incompleteness and undecid-
ability. Unlike Robinson (or Peano) arithmetic, where the individuals are
numbers that can be added or multiplied, in the theory of concatenation
one has strings (or texts) that can be concatenated. So in the language of
the theory of concatenation there is a binary function symbol ⌢ for laying
two strings end to end to form a new string. Axioms of the theory of con-
catenation postulate, e.g., associativity of the operation ⌢, or the existence
of irreducible, i.e. single-letter, strings. Particular variants of the theory of
concatenation may differ in the number of irreducible strings (with two as
the most obvious choice), or in the existence of the empty string.
Before Grzegorczyk, some aspects of concatenation were considered and

some axioms were formulated by Quine (1946) and Tarski. One variant
of the theory, called theory F, appears already in the book (Tarski et al.,
1953), where it is claimed but not proved that F is essentially undecidable.
Grzegorczyk’s motivation to study the theory of concatenation is philo-

sophical. When reasoning or when performing a computation, we deal with
texts. Our human capacity to perform these intellectual tasks depends on
our ability to discern texts. Then it is natural to define notions like unde-
cidability directly in terms of texts, without reference to natural numbers.

∗This work is a part of the research plan MSM 0021620839 that is financed by the Ministry
of Education of the Czech Republic.
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When proving Gödel 1st incompleteness theorem, choosing the theory of
concatenation as the base theory could be preferable to choosing Peano
or Robinson arithmetic, because then one of the essential steps in the in-
completeness proof, formalization of logical syntax, would be practically
effortless.
We will discuss properties of two theories of concatenation, theory F de-

fined in Tarski et al. (1953) and theory TC proposed by Grzegorczyk. It
appears that an appropriate method of showing undecidability of all con-
sistent extensions is proving mutual interpretability of these theories with
Robinson arithmetic Q. We will consider methods of constructing interpre-
tations, one of these being the well known Solovay method of shortening
of cuts. We will also discuss the Grzegorczyk’s project of replacing Robin-
son’s Q by some version of theory of concatenation in more details. The
pros of the project are obvious, but there are also some cons.

2 Some preliminaries

For an axiomatic theory T , let Thm(T ) be the set of all sentences provable
in T , in symbols Thm(T ) = {ϕ;T ⊢ ϕ}, and let Ref(T ) be the set of all
sentences refutable in T , in symbols Ref(T ) = {ϕ;T ⊢ ¬ϕ}. A theory T is
consistent if Thm(T )∩Ref(T ) = ∅, i.e., if no sentence of T is simultaneously
provable and refutable in T . A theory T is complete if it is consistent and
each sentence of T is either provable or refutable in T . A theory T is recur-
sively axiomatizable if it is equivalent to a theory T ′ with an algorithmically
decidable set of axioms (i.e. with T ′ algorithmically decidable). A theory is
decidable if there exists an algorithm that decides about its provability, i.e.,
if the set Thm(T ) is algorithmically decidable.
A theory S is an extension of a theory T if the language of T (i.e. the

set of all non-logical symbols of T ) is a subset of the language of S, and
each sentence of T provable in T is provable also in S. A theory T is essen-
tially incomplete if no recursively axiomatizable extension of T is complete;
T is essentially undecidable if no consistent extension of T is decidable. It
is known that a theory is essentially incomplete if and only if it is essen-
tially undecidable. Thus we use these notions interchangeably or, following
Grzegorczyk, we preferably speak about essential undecidability.
An interpretation of a theory T in a theory S is a mapping from formulas

of T to formulas of S that well-behaves w.r.t. logical symbols and maps all
axioms of T to sentences provable in S. A theory T is interpretable in S
if there exists an interpretation of T in S. The notion of interpretation, as
well as the notion of essential undecidability, first appeared in (Tarski et al.,
1953). Important facts about interpretability are the following: (i) if T is
interpretable in S and S is consistent then T is consistent, too; (ii) if T is
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interpretable in S and T is essentially undecidable then then S is essentially
undecidable, too. The notion of interpretability can be used as a means to
measure strength of axiomatic theories: if T is interpretable in S and vice
versa, i.e., if T and S are mutually interpretable, then we can think that
T and S represent the same expressive and deductive strength.

3 The importance of Robinson arithmetic

Robinson arithmetic Q is an axiomatic theory having seven simple axioms
formulated in the language {+, ·, 0,S} with symbols for addition and multi-
plication (of natural numbers), a constant for the number zero, and a unary
function symbol S for the successor function x 7→ x+1. Peano arithmetic PA
is obtained from Q by adding the induction schema. The theory I∆0 is like
Peano arithmetic, but with the induction schema restricted to ∆0-formulas
(bounded formulas) only. The theory I∆0+Ω1 is I∆0 enhanced by the ax-
iom asserting the totality of the function x 7→ xlog x. For a non-expert, the
properties of natural numbers expressible by ∆0-formulas constitute a class
that is a subclass of all algorithmically decidable properties. An example
of a ∆0-formula is the formula ∃v(v · x = y), i.e. the formula the number x
is a divisor of the number y. Two other examples are the number x is prime
and the number x is divisible by some prime. An example of a formula that
is not ∆0 is there exists a y > x such that y 6= 0 and y is divisible by all v
such that v 6= 0 and v ≤ x; this formula speaks about a thing similar to
the factorial of x. Another example of a non-∆0 formula is there exists a y
such that y > x and y is prime. In the theory I∆0, one cannot prove that
a factorial of x exists for each number x, while provability of the sentence a
prime y > x exists for each x is a difficult open problem. Both sentences are
easily proved by unrestricted induction, i.e. in Peano arithmetic.
Basic properties of natural numbers, like associativity and commuta-

tivity of addition and multiplication, are provable in I∆0, but unprovable
in Q. Generally, universal sentences are seldom provable in Q. However,
I∆0+Ω1 is interpretable in Q. Gödel 1st incompleteness theorem, or better,
its Rosser generalization, says that any recursively axiomatizable extension
of Q is incomplete. So Q is essentially incomplete (essentially undecidable).
The meaning of Gödel 2nd incompleteness theorem is somewhat question-
able for Q. However, its usual proof goes through in I∆0+Ω1 without any
changes.
Thus Robinson arithmetic Q is a very weak but still essentially undecid-

able theory. It represents a rich “degree of interpretability” because a lot
of stronger theories, like I∆0+Ω1, are interpretable in it. Since it is finitely
axiomatizable, it can be used in a straightforward proof of undecidability of
classical predicate logic.
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Figure 1. The editors axiom

4 The theory TC

The theory of concatenation TC has the language {⌢, ε, a, b} with a bi-
nary function symbol ⌢, a constant ε for the empty string, and two other
constants a and b. We usually omit the symbol ⌢, i.e., write xy for the con-
catenation x⌢y of the strings x and y. The axioms of TC are the following:

TC1: ∀x(xε = εx = x),

TC2: ∀x∀y∀z(x(yz) = (xy)z),

TC3: ∀x∀y∀u∀v(xy = uv →
→ ∃w((xw = u & wv = y) ∨ (uw = x & wy = v))),

TC4: a 6= ε & ∀x∀y(xy = a → x = ε ∨ y = ε),

TC5: b 6= ε & ∀x∀y(xy = b → x = ε ∨ y = ε),

TC6: a 6= b.

The axioms TC1 and TC2 can be described as axioms of semigroups; by TC2
we can omit parentheses in expressions whenever convenient. The axioms
TC4–TC6 postulate that the strings a and b are different, and each of them
is non-empty and irreducible (cannot be non-trivially decomposed into two
strings). The axiom TC3 is called editors axiom in (Grzegorczyk, 2005). It
describes what happens if two editors of a large work independently suggest
splitting the text into two volumes. If their suggestions are x, y and u, v
respectively, as shown in the Figure 1, then the first volume of one of the
editors consists of two parts: the other editor’s first volume, and a text w
(possibly empty) that simultaneously occurs as a starting part of the other
editor’s second volume. In (Ganea, 2007) this text w is called an interpolant
(of the equation xy = uv).
The theory of concatenation TC was defined in (Grzegorczyk, 2005).

However, the editors axiom is attributed to Tarski, and the idea about the
importance of concatenation in incompleteness proofs can be traced back
to Quine, who in (Quine, 1946) cites Tarski and Hermes and says: Gödel’s
proof [. . . ] depended on constructing a model of concatenation theory within
arithmetic. Note that Quine does not list any axioms, and thus when he
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says “concatenation theory”, he in fact means its standard model (defined
below). Grzegorczyk (2005) proved (mere) undecidability of TC. Later
Grzegorczyk and Zdanowski (2008) showed essential undecidability of TC
and left open the question whether Robinson arithmetic is interpretable
in TC. A. Visser and R. Sterken, see (Visser, 2009), M. Ganea in (Ganea,
2007), and the present author in (Švejdar, 2009) independently gave a pos-
itive answer to this question. More about interpretability in (and of) TC is
in Section 5 below.
The papers (Grzegorczyk, 2005) and (Grzegorczyk & Zdanowski, 2008)

work with a variant of TC having no empty string. Then, for example,
the axiom TC4 has the form ∀x∀y(xy 6= a). The paper (Švejdar, 2009)
works with a variant of TC having three instead of two irreducible strings.
The exact choice of variant of the theory is a matter of taste because, as
shown in (Grzegorczyk & Zdanowski, 2008), all variants of the theory of
concatenation are mutually interpretable, provided the irreducible strings
are at least two in number.
Let A be the set {a, b}∗ of all strings in the two-letter alphabet {a, b},

and let A be the structure with A as a universe, with concatenation defined
“normally” and with constants a and b realized by a and b, respectively.
Then A is the standard model of TC. The structure B having the set
B = {a, b, e}∗ as its universe and with all symbols also defined normally is
another example of a model of TC. Let x ⊑ y mean ∃u∃v(uxv = y), and
let x y mean ∃u(ux = y). The formulas x ⊑ y and x y can be read
the string x is a substring of y and the string y ends by x respectively. The
model B above shows that the sentence ∀x(x 6= ε → a ⊑ x ∨ b ⊑ x) is not
provable in TC.
The following theorem gives some more examples of provable and un-

provable sentences. Its purpose is to give the reader some feeling about
provability in TC.

Theorem 9. The following sentences (a)–(d) are provable in TC,

(a) ∀x(xa 6= ε),

(b) ∀x∀y(xy = ε→ x = ε & y = ε),

(c) ∀x∀y(xa = ya→ x = y),

(d) ∀x∀y(a xy → y = ε ∨ a y),

while the following sentence (e) is not provable in TC:

(e) ∀x∀y∀z(xz = yz → x = y).

Proof. (a) Assume xa = ε. Then, by TC1 and TC2, we have (bx)a = b.
Irreducibility of b, i.e. TC5, yields bx = ε or a = ε. The latter is excluded
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by TC4. Then from bx = ε, (bx)a = b, and TC1 we have a = b, a
contradiction with TC6.
(b) If xy = ε then x(ya) = a using TC1 and TC2. So x = ε or ya = ε

by TC4. From (a) we have x = ε. Then xy = ε yields y = ε.
(c) Let xa = ya. By the editors axiom TC3, there exists a w such that

xw = y & wa = a or yw = x & wa = a. Consider the first case, the second
one is symmetric. From wa = a and irreducibility of a we have w = ε. From
that and xw = y we indeed have x = y.
(d) Let a xy, and let u be such that ua = xy. The axiom TC3 yields

a w satisfying uw = x & wy = a, or xw = u & wa = y. In the second case
we obviously have a y. So consider the first case. From wy = a we have
w = ε or y = ε. If y = ε then we are done. If w = ε then y = a, and thus
a y.
(e) Let D be the set of all strings in {a, b, e}∗ that have no occurrences

of ae. Realize a and b by a and b respectively, and define x+ y accordingly:
x + y results from xy by repeating the substitution ae→e while possible.
For example, bab + eb = babeb, but baa + eb = beb. One can check, in case
of TC3 with a little effort, in case of the remaining axioms rather easily,
that the structure D = 〈D,+, ε, a, b〉 is a model of the theory TC. In D

we have a + e = ε + e. So the formula x⌢z = y⌢z is not true in D if x,
y, z are evaluated by a, the empty string, and e respectively, and thus the
sentence (e) is not valid in D.

Another useful sentence is ∀x∀y(a ⊑ xy → a ⊑ x ∨ a ⊑ y). We leave
its proof in TC as an exercise. More about the theory TC and about its
models is in (Visser, 2009).

5 The theory F, interpretability

Theorem 10. Robinson arithmetic Q is interpretable in TC.

Proof. We only give the basic idea of the proof given in (Švejdar, 2009).
The full proof is rather technical.
When constructing an interpretation, one first has to specify its domain,

which in our case means to work in TC and select strings that will play the
role of natural numbers. It appears that the following definition works:

Num(x)≡∀u(u ⊑ x & u 6= ε→ a u),

a string x is a number if each non-empty substring of x ends by a. Note
that, in the model D in the proof of Theorem 9(e), the string e starts by a
(since e = a + e). However, e is not a number because it is a non-empty
substring of itself and cannot be written as e = z+a, i.e. does not end by a.
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Having numbers, addition is interpreted as concatenation, zero is inter-
preted as the empty string ε, and the successor function S is interpreted as
the function x 7→ xa. These definitions work because in TC one can prove
that ε and a are numbers and that numbers are closed under concatenation.
All axioms of Q about 0, S, and + translate to sentences provable in TC
under this interpretation.
To interpret multiplication, a straightforward idea is to first define the

notion of a witnessing sequence. A sequence of pairs [u0, v0], . . , [uq, vq] is
a witnessing sequence for x · y if: u0 = v0 = ε, for each i < q the pair
[ui+1, vi+1] equals [uia, viy], and uq = x. Then one can define that x · y = z
if there exists a witnessing sequence for x · y with [x, z] as the last member.
The problem here is that in TC it is not possible to prove that a witnessing
sequence exists for each choice of x, y, and it is also not possible to prove
that if it exists, it is uniquely determined. A way how to overcome this
problem is interpreting not the full Robinson arithmetic Q, but rather its
variant Q− in which addition and multiplication are non-total functions.
Then the result is obtained by combining the constructed interpretation
of Q− in TC with a fact known from (Švejdar, 2007) that Q is interpretable
in Q−.

The theory Q− used in the proof of Theorem 10 was also introduced
by Grzegorczyk. The interpretation of Q in Q− in (Švejdar, 2007) is con-
structed using the Solovay method of shortening of cuts. This method is
now widely known, but was never published: it is only explained in a letter
to Petr Hájek (Solovay, 1976). M. Ganea in (Ganea, 2007) gives a different
proof of interpretability of Q in TC, but he also uses the detour via Q−.
Sterken and Visser give a proof not using Q−, see (Visser, 2009).
A consequence of the fact that Q is interpretable in TC is essential un-

decidability of TC. All proofs of interpretability of Q in TC are somewhat
involved, but still simpler than the direct proof of essential undecidability
of TC given in (Grzegorczyk & Zdanowski, 2008). These interpretability
proofs might use some ideas developed by Grzegorczyk and Zdanowski: that
is certainly true about the author’s proof in (Švejdar, 2009).
Since TC is interpretable in I∆0, the theories TC and Q are mutually

interpretable; thus they represent the same expressive and deductive power.
This is a piece of information missing in (Grzegorczyk & Zdanowski, 2008).
An interesting alternative theory of concatenation is the theory F. It has

the same language as TC, and its axioms are:

F1: ∀x(xε = εx = x),

F2: ∀x∀y∀z(x(yz) = (xy)z),

F3: ∀x∀y∀z(yx = zx ∨ xy = xz → y = z),
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F4: ∀x∀y(xa 6= yb),

F5: ∀x(x 6= ε → ∃u(x = ua ∨ x = ub)).

Axioms F1 and F2 are the same as axioms TC1 and TC2 of TC. It is easy
to verify that axiom F4 is provable in TC; axioms F3 and F5, as is evident
from models D and B in the previous section, are not provable in TC. From
the opposite point of view, axioms TC4–TC6 and sentences (a) and (b) in
Theorem 9 are examples of sentences provable in F; we leave their proofs
to the reader as an interesting exercise. Albert Visser, see (Visser, 2009),
has constructed a model M of F such that M /|= ∀x∀y(a ⊑ xy → a ⊑
x∨ a ⊑ y). Thus in F, one can have strings w1 and w2 such that a ⊑ w1w2,
a 6⊑ w1, a 6⊑ w2; Albert Visser describes this situation as creating a letter
ex nihilo. A consequence of these remarks is that Thm(TC) and Thm(F)
are incomparable sets of sentences.
It is claimed in (Tarski et al., 1953) that W. Smielew and A. Tarski

proved essential undecidability of F by interpreting Q in F; however, no
proof is given. Ganea (2007) constructed an interpretation of TC in F. In
conjunction with Theorem 10, this gives a proof of the theorem of Smielew
and Tarski. We give (a slight simplification of) Ganea’s proof below in
Theorem 11. Note however, that it is still an interesting historical problem
what proof could Smielew and Tarski have had in mind. Ours (Ganea’s)
proof implicitly uses the Solovay’s shortening technique, formulated long
after the book (Tarski et al., 1953) was published. A. Visser has some
possible explanation of this historical problem.

Theorem 11 (Ganea). TC is interpretable in F.

Proof. Work in F and define tame strings as follows:

Tame(x) ≡ ∀v∀z(z vx→ z x ∨ x z),

where has the same meaning as in TC.
(i) We first show (prove within F) that tame strings are closed under

concatenation. So assume that x and y are tame, and let v and z be such
that z vxy. We need to show that z xy or xy z. Since y is tame,
we have z y or y z. If z y then z xy and we are done. So assume
that y z and take t such that ty = z. From z vxy we have a u such
that uz = vxy; thus uty = vxy. From axiom F3 we have ut = vx. Since x
is tame, we have t x or x t. Then ty xy or xy ty. Since ty = z,
we indeed have z xy or xy z.
(ii) Next we show that if wy is tame, then also w is tame. So let v and z

be such that z vw. We want to show that z w or w z. From z vw
we have zy vwy. Since yw is tame, we have zy wy or wy zy. Then
a straightforward use of axiom F3 yields z w or w z.
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Now we are ready to verify that the domain of tame strings, together with
the identical mapping of symbols (a, b, and ε to a, b, and ε respectively,
concatenation to concatenation), defines an interpretation of TC in F. It
is not difficult to verify that a, b, and ε are tame; this together with (i)
means that the domain of tame strings is closed under all operations. The
axiom TC1 translates to the sentence ∀x(Tame(x) → xε = εx = x). This
sentence is evidently provable in F. A similar argument shows that axioms
TC2 and TC4–TC6 translate to sentences provable in F as well. This is so
easy because TC2 and TC4–TC6 are universal sentences.
Thus it remains to prove the the translation of the editors axiom TC3 is

provable in F. Note that TC3 is the only axiom of TC that is not a universal
sentence; it contains an existential quantifier. Let x, y, u, v, be tame strings
such that xy = uv. We have to show that there exists a tame w satisfying
xw = u & wv = y or uw = x & wy = v. Since y is tame, from uv = xy
we have v y or y v. It is sufficient to consider the latter, the former is
symmetric. We have a w such that wy = v. Then uwy = uv and uwy = xy.
From axiom F3 we have uw = x. So w is an interpolant. Since v is tame,
from wy = v and (ii) above we know that w is tame.

Since F is easily interpretable in I∆0, from the other results mentioned in
this paper we know that F and TC are deductively incomparable, but from
interpretability point of view they represent the same degree of deductive
strength. It may be of some interest to directly interpret F in TC.

Theorem 12. F is interpretable in TC.

Proof. Now in TC, work with radical strings, where

Rad(x) ≡ ∀y∀z(yx = zx→ y = z).

It is not difficult to show that radical strings include ε, a, and b, and that
the domain of all radical strings that are empty or end in either a or b is
closed under concatenation and defines an interpretation of F.

6 On the Grzegorczyk’s project

Let us repeat from the Introduction that Grzegorczyk’s suggestion is to
consider strings and concatenation on both formal and metamathematical
level. On formal level, the theory of concatenation can serve as an alterna-
tive to Robinson arithmetic; on metamathematical level, dealing with texts
is philosophically better justified because intellectual activities like reason-
ing and computing involve working with texts. Briefly, the motivations of
that project can be summarized as follows:
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• in Gödel’s argument, the only use of numbers is coding of syntactical
objects,

• then Gödel theorems are presented as a part of mathematics, but their
significance is broader,

• when reasoning, communicating, or even computing, we deal with
texts, not with numbers,

• on metamathematical level, the notion of computability can be defined
without reference to numbers.

One could remark that mathematics in not necessarily identified by working
with numbers; Gödel theorems could be presented as part of mathematics
even if reformulated without numbers, and they transcede mathematics re-
gardless whether their formulation involves strings or numbers. With this
little remark in mind, one can say that the arguments pro Grzegorczyk’s
project are clear and easily acceptable. The definition of recursiveness with-
out using numbers, as done in (Grzegorczyk, 2005), is very interesting.
However, it is also possible to find some arguments that speak contra that

project, or at least for modifying or extending it. First, when reasoning
or computing, we not only concatenate: we also substitute. Creating a
grammatically correct sentence in a natural language can be described as
substituting into patterns. In logic, we have substitution in formulation of
predicate axioms. So one can think that the theory of concatenation, if
enhanced by some notion of occurrence or substitution, could better serve
its purpose. Second, when proving essential undecidability, one also needs
an order. Known proofs usually (is it a mistake to say always?) contain
some sort of Rosser trick, i.e., speak about an event that occurs before some
other event. One can think that considering order is more natural in the
environment of numbers than in the environment of strings. In fact, defining
an order of strings is one of crucial and rather difficult steps in the essential
undecidability proof of TC contained in (Grzegorczyk & Zdanowski, 2008).
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The Role of Negation in Proof-theoretic Semantics:

a Proposal

Luca Tranchini∗

Proof-theoretic semantics, as developed by authors such as Dummett and
Prawitz, tries to account for the meaning of logical constants through the
use made of them in practice. The typical context in which they figure
is deduction, so the program becomes the one of showing how the rules
governing deductive practices fix the meaning of logical constants. The
theoretical requirement rules have to satisfy is harmony, which is endorsed
in Gentzen’s inversion principle.
One of the distinctive features of human language is compositionality,

that is the possibility of producing sentences of arbitrary complexity by
means of logical operators. Hence proof-theoretic semantics can aim at
being the core of a fully-fledged theory of meaning, that is of an explication
of speakers language competence.

1 Verificationism: Proof and Assertion

The verificationist theory of meaning, is grounded on the choice of assertion
as the basic linguistic act. Assertion is taken to be governed by the following
principle

The assertion of a sentence is warranted only if its truth is recognized

where the intuitive notion of truth recognition is to be explained by means
of the notion of proof.
Clearly, the proofs that count as evidence for the truth of sentences are

only closed proofs, i.e. proofs in which the conclusion does not depend on
any assumption.
Open proofs are only mediately connected with linguistic acts. Take an

open proof of B from A

∗This work has been supported by the ESF EUROCORES programme “LogiCCC —
Modelling Intelligent Interaction” (DFG grant Schr275/15–1).
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A....
B

the sentence B can be asserted only if evidence for A is available. If A
is atomic, evidence will consist in the opportune computation, if A is a
mathematical sentence. Whenever A is an empirical sentence we can think
of evidence for it as an opportune empirical observation.
Technically, to account for these “atomic proofs” in a standard natural

deduction system we extend the vocabulary with a set P of propositional
constants, standing for the atomic sentences of language. A subset of such
sentences, T will consists of the sentences for which extra-deductive evidence
is available. The set of open assumptions in a deduction will be restricted
to those not belonging to T.
If A is a complex sentence, one can try to obtain a proof of it from atomic

assumptions in T. Still, it is not always possible to do so. Nonetheless, even
in cases such as these we can obtain a closed proof from the open one, even
though the conclusion of the closed proof is not the conclusion of the open
one, but a more complex sentence. Typically, implication is the device by
means of which an open proof is taken into a closed one having as conclusion
the implication of the assumption and the conclusion of the open proof:

[A]
....
B

A→ B

In general, we can say that verificationism focuses on the role of sen-
tences as conclusions of deductive processes. As a consequence, the rules
that are taken to fix the meaning of logical constants are introduction rules.
For, they specify the conditions under which a sentence having the relevant
constant as principal operator can be introduced as conclusion of a deriva-
tion. Accordingly, the notion of canonical proof (that is of a proof in which
introduction rules play a prominent role) has been taken as the explicans
of the notion of meaning. That is, to know the meaning of a sentence is to
know what counts as a canonical proof of it.

2 Negation

To account for negation in verificationism, the symbol ⊥, standing for ab-
surdity, is introduced. The negation of a sentence A, ¬A, is defined, in full
analogy with the BHK clause, as A→ ⊥. So we have two rules for negation
(an introduction and an elimination), which are nothing but special cases
of the implication rules.
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[A]
....
⊥
¬A I¬

....
A

....
¬A
⊥ E¬

Obviously, the inversion principle holds for these rules as well (as a conse-
quence of its validity for implication).

The problem

Such a characterization grasps all properties of intuitionistic negation except
the fact that no construction offers evidence for the absurdity. So, further
rules have to be added, to fix the intended meaning of ⊥.
It is no simple task to explicitly express with a rule the fact that no

construction satisfies the absurdity: rules specify ways of obtaining proofs,
while our aim is to specify the absence of proofs.
Intuitionistic Natural Deduction NJ is obtained by extending minimal

logic with the following rule, so called ex falso quodlibet :

....
⊥
A
ef

Once the absurdity has been derived, it is possible to derive everything.
The rule is intended to hold for any sentence A. Still, without loss of

generality, it is useful to restrict it to atomic sentences. As a consequence,
⊥ can be taken as an abbreviation of a self-contradictory atomic sentence,
for instance ‘0 = 1’, deductively characterized by the fact that it entails all
other atomic sentences.
As with the ex falso we can formally seize intuitionistic logic, it is natural

to think of it as grasping the intended meaning of the absurdity. Yet, as
some authors have noticed, it is dubious that the ex falso conveys to ⊥ the
desired meaning. The fact that it is to be read as absurdity seems to depend
on which atomic sentences are provable. Indeed if all atomic sentences were
provable, there would be nothing wrong in asserting ⊥ as only true sentences
could be inferred from it. But if ⊥ has to be considered as standing for the
absurdity, then it should not be assertible in any situation.
A possible way out (Dummett, 1991) is to ban the possibility that all

atomic sentences can be simultaneously asserted, that is to assume that at
least two atomic sentences are mutually incompatible. Nonetheless, this
restriction sounds definitely ad hoc: we have no reason to propose it, apart
from the need of warranting that the ex falso conveys the expected meaning
to ⊥ and, consequently, to negation.
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Brouwer on absurdity and negation

In Brouwer’s early writings we find the idea that the negation of a sentence
is warranted when

we arrive by a construction at the arrestment of the process which
would lead to [a construction for the sentence].1

To clarify this point, one can imagine a mathematician (or, rather, the
idealized mathematician) attempting to produce a construction for a sen-
tence A. Unfortunately, it is impossible to obtain a construction for A.
Hence, each attempt reaches a certain point after which it is not possible to
carry out the construction, a point beyond which, in Brouwer’s words, “the
construction no longer goes.”
According to Brouwer, when the mathematician finds herself (i.e., she

produces a construction showing that she is) in such a situation she can
declare the sentence false or, equivalently, accept its negation as warranted.
It is only later that the idea of arrest in the process of construction is

substituted by the one of contradiction, glorified in the BHK specification
of the semantics for the intuitionistic logical constants. The treatment of
contradiction as a sentence, implicit in the intuitionistic informal semantics
has been fully fledged, as we briefly showed, with the marriage between
intuitionism and natural deduction, through the opportune reading of the
ex falso rule.

Tennant on ⊥
Recently, Tennant (1999) tried to challenge the verificationist account of
what is a proof for the negation of a sentence. Even if he doesn’t make
explicit reference to Brouwer, it is quite natural to put the conception of ⊥
he proposes side by side with the idea that a contradiction is nothing but a
dead end in the process of construction.
Tennant starts from the refusal of considering proofs of the negation of

a sentence as methods to obtain a proof of a false sentence, ⊥. Rather, he
proposes considering ⊥ as a marker of a dead end in the process of con-
struction. Clearly, ⊥ is devoid of sentential content, i.e., it is no more an
abbreviation for ‘0 = 1’. Hence, we are forced to withdraw the interpre-
tation of ¬A as A → ⊥: as ⊥ has no sentential content we can’t apply
to it sentential operators, in particular implication. We can conclude with
Tennant’s that,

accordingly, an occurrence of ⊥ is appropriate only within a proof, as
a kind of knot —the knot of patent absurdity, or of self-contradiction.2

1 (Brouwer, 1908, p. 109).
2 (Tennant, 1999, pp. 203–204).



Negation in Proof-theoretic Semantics 277

However, Tennant does not completely embody Brouwer’s solution. For,
according to Brouwer, proving the negation of A means finding a dead end
in the route toward the proof of A. On the other hand, Tennant thinks that
the role of A is not that of an unreachable goal, but rather a starting point.
We prove the negation of A when we reach a dead end starting from A. It
is important to observe that this is not to say that we start from a hypo-
thetical construction for A, as in Heyting interpretation of the meaning of
negation. Rather we are performing an activity which is different from the
production of proof. Such an activity is not oriented by the conclusion that
we want to reach, but rather by the point from which we start. Tennant
introduces a new primitive notion to refer to this alternative activity: dis-
proof. The activity of construction is then split in two different subspecies:
the production of proofs and the production of disproof. When we attempt
to disproof a sentence we do not start from a proof of it that then turns out
to be impossible. We simply look for a disproof of it.
As a consequence, the BHK negation clause is reformulated as:

• A proof of ¬A is a disproof of A

dropping the ⊥ clause. So, instead of analyzing negation in terms of impli-
cation and absurdity, we try to do this in terms of disproofs.
Tennant presents his notion of disproof without any reference to related

work. Though it seems quite natural to compare these ideas with what
Dummett and Prawitz said about the possibility of developing a theory of
meaning centered around the notion of refutation.3

3 Falsificationism: Refutation and Denial

According to both Dummett and Prawitz,4 it is possible to think of theories
of meaning alternative to verificationism, in particular to one in which the
meaning of sentences is specified by what counts as their refutation. The
primitive character of refutations can be endorsed by considering the lin-
guistic act parallel to the one of assertion, the linguistic manifestation of the
possession of a refutation of a sentence: denial. The relationship of denial
to refutation is governed by the principle:

The denial of a sentence is warranted only if its falsity is recognized

where the recognition of the falsity of a sentence amounts to the possession
of a refutation of it.

3While Tennant speaks of disproofs, we prefer refutation. As will be cleared, the intu-
itions behind the two notion are common, even though the detailed treatment is sensibly
different.
4The ideas presented in this section come from (Dummett, 1991, Ch. 13) and (Prawitz,
1987, § 6).
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This theoretical perspective of Popperian flavor is grounded on the in-
tuition according to which, in accepting a sentence, a speaker must also
be ready to accept all its consequences. Whenever one of its consequences
turns out to be unacceptable, so too must the sentence upon which it de-
pends be rejected. Hence the central notion of a theory of meaning in which
denial plays a basic role will be the one of consequence of a sentence. Thus,
the meaning of the logical constants is fixed by elimination rules, as they
typically specify how a sentence can be used as assumption in a derivation.
According to Dummett and Prawitz, one needs not to introduce new

technical tools to account for refutations. Rather the notion of refutation
can be defined in a standard natural deduction framework providing an
alternative interpretation of the deductive system.
According to the verificationist reading, one can easily construct proofs of

more complex sentences starting from proofs of simpler ones with introduc-
tion rules. So, according to falsificationism, one can construct refutations of
more complex sentences from refutations of simpler ones with elimination
rules. For example taken a refutation of A:

A....

one can obtain a refutation of A∧B with the help of the ∧ elimination rule:
A ∧B
A

E∧
....

The core of the deductive processes will then be the assumption, that acts
like a starting point of the derivation and that one tries to refute. As a
consequence, the rules that are taken to fix the meaning of logical con-
stants are elimination rules. For, they specify the conditions under which a
sentence having the relevant constant as principal operator can be used as
assumption in a derivation. Accordingly, the notion of canonical refutation
(that is of a deduction in which elimination rules play a prominent role) has
been taken as the explicans of the notion of meaning. That is, to know the
meaning of a sentence is to know what counts as a canonical refutation of
it.
As in the verificationist framework, so here not all derivations are directly

linked to the basic linguistic act. Again, an open derivation of B from A

A....
B

receives a hypothetical reading: if one comes into possession of a refutation
of B (i.e., if she is in the position of denying B), then she will also be in the
position of denying A.
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Just as in the verificationist case, we introduce a notion of evidence for
atomic sentences to which we refer as extra-deductive refuting evidence.
Suppose B is the sentence ‘The cup on the table is blue’, the empirical
observation that the cup on the table is red can be taken as refuting evidence
for B.
Technically, we define a subset of the propositional constants, F, contain-

ing the atoms for which an extra-deductive refutation is available. Refuta-
tions ending with atoms belonging to F, having as open assumptions in-
stances of only one sentence, will allow the denial of that sentence.
The disanalogy between the two perspectives consists in the lack of a

connective acting in falsificationism as implication does in verificationism.
Such a connective should allow the denial of a sentence also in situations
in which only an open deduction is at hand. As implication is said to
discharge the open assumption, so the connective in question could be said
to “discharge the conclusion” of the deduction.
But does the standard language possess a tool which can be taken in

some sense to discharge conclusions? Negation can be (partially) thought
of in these terms. Consider a derivation of A

....
A.

The negation elimination rule can be seen as a way of closing the conclusion
of the derivation by introducing a more complex assumption:

....
A ¬A
⊥ .

This is actually in full analogy with the way in which implication works: it
closes an assumption and introduces a more complex conclusion.

4 Toward a unified framework

The two theories of meaning, verificationist and falsificationism, have been
treated by both Dummett and Prawitz as two different (concurrent) theoret-
ical enterprises. That is, a semantics for a given language can be developed
either according to the verificationist or the falsificationist standpoint.5

On the contrary, Tennant’s suggestions on the role of ⊥ in a deduction
are very near to the falsificationist perspective. By looking at his proposal
in more detail, one realizes that it is nothing but a mixture of the two views
on meaning.

5Dummett actually gives reasons for developing simultaneously both perspectives. But
even in such a case the two theories are distinct.
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The limits of Tennant’s approach

As we saw, Tennant’s suggests to read ⊥ as a marker of dead ends in deduc-
tions. In other words, a deduction ending with ⊥ is taken as a deduction
with no conclusion. Hence, he proposes to interpret natural deduction sys-
tems as providing the means for producing open proofs, closed proofs and
disproofs.

Suppose one has a logical system for which the existence of
proofs is indicated by the usual turnstile ⊢, a relation of exact de-
ducibility holding between premises on the left and a conclusion
on the right. The intuitive meaning of ‘X ⊢ A’ is that there is a
proof whose conclusion is A and whose premises (undischarged
assumptions) form the set X. [. . . ]
There are two extreme cases.

1. X is empty. Then ‘⊢ A’ means A is a theorem. That is,
there is a proof of A ‘from no assumptions’. [. . . ]

2. A is ‘empty’. Then ‘X ⊢’ means that there is a disproof of
X, that is, a deduction showing that X is inconsistent.

Accordingly, instead of the usual inductive definition of proof, Tennant’s
gives a simultaneous definition of the notions of proof and disproof.
Still, in the light of the considerations on falsificationism, Tennant’s ap-

proach can be criticized for the asymmetry in the treatment of the two no-
tions. In particular, to treat open deductions as open proofs means to treat
them as “incomplete proofs”: they are means of obtaining closed proofs of
the conclusions, provided closed proofs of the assumptions. But why should
they not be considered as “incomplete refutations”, that is as means of
rejecting the premises once refutations of the conclusions are provided?
This asymmetry can also be seen in Tennant’s way of dealing with rules,

in giving the definition of proof and disproof. Introduction rules can be used
only to produce proofs. Elimination rules, on the other hand can be used
to produce either proofs or disproofs, depending on whether the deductions
of the minor premises are proofs or disproofs. Here are the two cases for
disjunction:

....
A ∨B

[A]
....
C

[B]
....
C

C

....
A ∨B

[A]
....
⊥

[B]
....
⊥

⊥

The point is that also introduction rules can be used in producing refuta-
tions. Just like in the verificationist perspective one produces non-canonical



Negation in Proof-theoretic Semantics 281

proofs with elimination rules, so in falsificationism one produces non-cano-
nical refutations with introduction rules.
Finally, it is implicit in Tennant’s line of argument that the role of ⊥ in

disproofs is analogous to the role of discharged assumptions in proofs. As a
closed proof is a deduction with no open assumptions, so a refutation is a de-
duction with no conclusion. Furthermore, even if Tennant does not consider
it, we saw that in order to use a natural deduction system for meaning-
theoretical purposes one also has to account for extra-deductive evidence
for atomic sentences. There is a deep analogy of the role of extra-deductive
probative and refuting evidence for atomic sentences and (respectively) the
role of discharging the assumptions and reaching a dead end in a deduction.
For all these are the means through which an open deduction is taken into
a closed one (either a proof or a refutation).
All these considerations suggest the possibility of re-framing the natural

deduction system in order to explicitly show these symmetries.

Top-closed and bottom-closed derivations

Both perspectives on meaning distinguish between derivations that immedi-
ately allow a linguistic performance and those that do not. In verification-
ism we have a distinction between closed and open proofs. It seems natural
to adapt this terminology to refutations, so that we have open and closed
refutations.
As we saw, Tennant proposes to treat (what in the standard framework

are considered) derivations of conclusion ⊥ as disproofs. For, ⊥ has no sen-
tential content and hence can’t be taken to be the conclusion of a deductive
process. Rather, it registers the fact that the deductive path leading to the
conclusion of the derivation is a dead end, or in other words, it is closed.
Can these two notion of “closure”, the one registered by ⊥ and the one of
deductive processes linked to linguistic acts, be taken into one?
To explicitly state the analogy we introduce the sign ⊤ to mark assump-

tion closure. So whenever an assumption is closed, we will mark it ⊤. In the
case of assumptions discharge through implication this simply amounts to a
notational change. Instead of putting the sentence in brackets (or overlining
it), we put the sign ⊤ over it. So, the introduction rule for implication will
appear as:

⊤
A....
B

A→ B

As we observed there are two different ways in which an open deduction
can be taken into a closed one. One can close one of the edges (assump-
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tions or conclusion) by logical means, in verificationism with implication, in
falsificationism with negation; alternatively one can try to reach the atomic
components of the sentence to be proved or refuted, to see if there is extra-
deductive evidence purporting or refuting such components.
If we consider verificationism, the notion of closure (by means of which

we usually refer to discharged assumptions) applies quite well also to atomic
sentences for which we have extra-deductive probative evidence: an assump-
tion is closed when the conclusion of the deductive process does not depend
on it. And clearly, not only the assumptions discharged through implication
are closed, but also the atomic ones for which extra-deductive evidence is
available. This suggests the idea of extending the use of ⊤ to mark the clo-
sure of the atomic assumptions as well. According to the way in which we
introduced atomic sentences in natural deduction in section 1, we can use
⊤ to explicitly mark the atomic sentences belonging to the set T of verified
atoms. To do this, we add a new rule to the natural deduction system:

if A ∈ T then
⊤
A

is a derivation of conclusion A from no assumptions.

For example, suppose the weather is windy: in such a case, the conclusion
of the derivation

⊤
It rains

⊤
It is windy

It rains and it is windy
I∧

If it rains then it rains and it is windy
I →

can be asserted, because it does not depend on any assumption, even if the
two assumptions are closed in different ways: the first one is discharged by
the application of the I → rule; the second one is closed by the availability
of the empirical evidence for it.
In analogy with this, in falsificationism we have two ways of taking an

open deduction into a refutation: either refuting evidence is provided for the
conclusion; or alternatively, we can use some language devices to “discharge”
the conclusion in the course of the derivation.
If we take a close look at the first possibility, Tennant’s idea of ⊥ as

registering a knot of inconsistency fits this situation quite well. For, ⊥ can
be taken to register an incompatibility between the output of the deductive
process and the available evidence. This suggests the possibility of extend-
ing the use of ⊥, by marking with it the atomic conclusions of derivations,
for which we are in possession of extra-deductive refuting evidence. We can
formally achieve this with a rule analogous to the one for atomic assump-
tions:
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if A ∈ F and
Γ....
A

is a derivation of conclusion A from assumptions Γ then

Γ....
A
⊥

is a derivation of no conclusion from assumptions Γ.

For example, suppose the cup on the table is red: in such a case we mark
the conclusion of the following derivation with ⊥:

The cup on the table is blue and it is full of tea

The cup on the table is blue
⊥

This extension of the use of⊥makes it possible to schematically represent
the core processes of falsificationism as

A....
⊥

This pattern stands for a refutation (and hence allows the denial) of a given
sentence A. We will also refer to such deductive patterns as bottom-closed
derivations. Once introduced the sign ⊤ in order to mark closed assumptions
in deductions, it is possible to represent the core processes of verificationism
with the scheme:

⊤....
A

standing for a proof (and hence allowing the assertion) of the sentence A.
We will refer to such deductive patterns as top-closed derivations.

New horizons for proof-theoretic semantics

As we previously underscored what we are proposing is a unified framework
in which both proofs and refutations can be accounted for. To do this we
have to add a set of propositional constants P to a standard natural deduc-
tion system and both a subset T of verified atoms and a subset F of refuted
atoms have to be specified. At this point we have that top-closed derivation
and bottom-closed derivations count as closed proof and closed refutations
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for sentences, i.e., they allow the assertion and denial of sentences. It re-
mains only a disanalogy between the two kinds of derivations, namely that
while to a top-closed derivation always corresponds the assertion of the
conclusion, to a bottom-closed derivation corresponds a denial only if the
assumptions of the deduction are occurrences of the same sentence. This is
due to the fact that the natural deduction framework allows at most one
conclusion but there is no limit on the number of possible assumptions.
Beside this, what looks really problematic for the full development of this

perspective is the definition of validity. For, in verificationism an open de-
duction is valid if, provided closed derivations of the assumptions, it reduces
to a closed proof; in falsificationism an open deduction is valid if, provided
a closed derivation of the conclusion, it reduces to a closed refutation of
the assumption(s). In other words, in both perspectives the categorical no-
tion of closed derivation has primacy over the hypothetical notion of open
derivation. The point is that it is not clear how the notion of validity is to
be shaped in a system in which we have two distinct categorical notions.
The direction in which the solution can be found is the rejection of the

proof-theoretic dogma according to which the categorical notion has pri-
macy over the hypothetical one. By doing this we could really embody
Tennant’s intuition according to which closed proofs are just limit cases of
open ones. Intuitively, this means that the ground concept of proof-theoretic
semantics is the recognition of deductive links among sentences, that only
in very special occasions can be taken to be oriented by the conclusion or
by the assumption. This idea can be seen at work in reading the rule for
making assumptions in natural deduction:

for any A
A

is a deduction having A as conclusion and A as assumption

Both verificationism and falsificationism are forced to read the rule as pro-
ducing “incomplete” derivations, in the sense of either an incomplete proof
of A or an incomplete refutation of A. From the unified perspective, the rule
for assumption is interpreted simply as ‘Consider A’: in considering A we
are neither committed to the expectation of a proof nor to the expectation
of a refutation of it, we are open to see what will happen at later stages of
the development of the deductive process.
Formal models which explicitly endorse this intuition are sequent calculi.

In such systems the full symmetry between assumptions and conclusion,
i.e. assertion and denial, is embodied in the symmetry between left and
right side of the turnstile. Coming back to validity, it is interesting to note
that no question of validity has ever been addressed for sequent calculi and
it is not completely clear how to formulate it. It would not be surprising
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that rather than a global definition of validity what is needed are simply
local criteria to be imposed on rules.6 But we do not push the issue further.

Absurdity and Consistency

As we saw, in order to fix the meaning of ⊥ via deductive rules, the ver-
ificationist has to require that all atomic sentences of language can’t be
simultaneously asserted. Otherwise nothing bans the possibility of assert-
ing ⊥, violating the BHK clause that states that ⊥ can’t be asserted in
any situation.
The interpretation we are proposing clearly makes the problem of the

assertion of ⊥ disappear, as ⊥ is no longer to be considered a sentential
content capable of being asserted (or denied). Nonetheless the intuition
that ⊥ can’t be asserted can be reformulated as follows. We noted that a
sentence can be asserted when we are in possession of a derivation, having
the sentence as conclusion, with no open assumptions. So, the expression
“⊥ can be asserted” appears as a rough way to refer to a situation that we
can schematically represent in this way:

⊤....
⊥

How is this pattern to be read? It looks like a derivation in which both
assumptions and conclusion have been closed. To better understand it,
consider a sentence A figuring in the derivation:

⊤....
A....
⊥

If we split up this deductive pattern we find ourselves with the following:

⊤....
A

A....
⊥

According to the reading of ⊥ and ⊤, these derivations amount to a proof
of A and to a refutation of A. That is, the possession of both the top- and
bottom- closed derivations allows both the assertion and the denial of A.
If we take the sentence A to be an atomic sentence, e.g., ‘The cup on

the table is red’, the top- and bottom-closed deductive pattern is available

6This direction is strongly called for by Schroeder-Heister (see for instance (Schröder-
Heister, 2009)).
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only if we are in possession both of supporting and refuting evidence for it.
Obviously, the fact that the sentence ‘The cup on the table is red’ can be
neither proved nor refuted does not depend on deduction, but rather on the
fact that it is not possible to see a red cup and a green cup on the table at
the same time.
Usually consistency is taken to be the impossibility of asserting the ab-

surdity. In the framework we are developing an alternative notion of consis-
tency can be put forward: namely, the impossibility of being in the position
of asserting and denying a sentence at the same time. This notion of consis-
tency amounts to the impossibility of obtaining deductive patterns having
both assumptions and conclusions that are closed.
Just like Dummett, to preserve consistency we have to impose a restric-

tion on atomic sentences: namely, we have to require that every atomic
sentence can’t be both asserted and denied (we will refer to this as atomic
consistency). Our restriction can’t be justified on logical basis, just as
Dummett’s one. Nonetheless, it is much more plausible to require that each
atomic sentence can’t be asserted and denied at the same time rather than
to require that there must be mutually incompatible atomic sentences. In
particular, such a restriction could be fully argued for, on the background
of considerations on human cognition.

5 Conclusions

Traditionally, the possibilities of developing an account of assertion and an
account of denial have been considered two different enterprises. To give an
account of the meaning of negation we suggested to develop a unique frame-
work in which the central role is played by the notion of open deduction.
By means of the ⊤ and ⊥ signs we can give an account in which deductive
patterns count as proofs and refutations of sentences, i.e., allow their asser-
tion and denial. As we saw, introduction rules are at the core of the process
of proof, while eliminations are at the core of the process of refutation.
At this point we can reconsider the alternative to the BHK clause for

negation Tennant proposed:

A proof for ¬A is a refutation of A

In the light of the conventions introduced we can schematize the equivalence
as:

A....
⊥ =

⊤....
¬A

It seems that we are faced with a sort of geometrical operation on deriva-
tion: by rotating 180◦ a refutation of A can be turned into a proof of ¬A.
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Hence, negation appears as a linguistic device that states in an explicit way
the implicit harmony, embodied in the inversion principle, holding between
grounds for a sentence and consequences of a sentence. Indeed, inversion
governs the relationship between introduction and elimination rules and
negation the one between proofs and refutations which are directly con-
nected to the two sets of rules.
A further question naturally arises, namely whether the standard rules

for negation do properly seize this crucial feature of the connective. If
the answer to be given were negative, than moving apart from standard
intuitionistic logic would be necessary.
In conclusion, we believe to have isolated the role of negation in the

architecture of deductive activity as being radically different from that of
other connectives. Even though the development of a unified framework, in
which to account for both the activities of proof and refutation, seems to
require further investigation, we believe it to be an important step to fully
develop a proof-theoretic account of the meaning of logical constants, as the
analysis of negation emerging from it shows.
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Schröder-Heister, P. (2009). Hypothetical reasoning: A critique of Dummett-
Prawitz-style proof-theoretic semantics. In The Logica Yearbook 2008. (Sequent
Calculi and Bidirectional Natural Deduction: On the Proper Basis of Proof-
Theoretic Semantics.)

Tennant, N. (1999). Negation, absurdity and contrariety. In D. M. Gabbay &
H. Wansing (Eds.), What is negation? Kluwer Academic Publishers.





Oiva Ketonen’s Logical Discovery

Michael von Boguslawski

1 Short biography of Oiva Ketonen

Oiva Toivo Ketonen was born January 21, 1913, in the municipality of Teuva
in the Southern Ostrobothnia region of Finland.1 He was child number eight
in a family that raised altogether 13 children. Already at a young age the
law-governedness of nature made a deep impression on him and apparently
planted the seed for an interest in the natural sciences. Ketonen was the
only one of the family’s children to get any form of higher education.
Ketonen graduated from Kristiinakaupungin Lukio (roughly equivalent

to high school) in 1932, and enrolled into the department of history and
linguistics (where philosophy in Helsinki was taught at that time) at the
university of Helsinki. The professor of philosophy at that time was Eino
Kaila, who had close connections with the Wiener Kreis and it was due
to his personal efforts that logic arrived in Finland. Ketonen switched to
the department of mathematics a year later, despite having doubts that
mathematics alone would satisfy his academic interests. Ketonen’s teacher
in mathematics became Rolf Nevanlinna, the famous complex function the-
oretician, and we can tell from preserved correspondence that Nevanlinna
was extremely impressed by Ketonen’s mathematical abilities.
There was only one text-book on logic available in Finnish at that time

— Thiodolf Rein’s Muodollinen logiikka — Formal logic (free translation
from Finnish) which treated only Aristotelian logic. There was a change in
the curriculum, however, and Bertrand Russell’s The problems of philoso-
phy and Kaila’s Nykyinen maailmankäsitys — The present world-view (free
translation from Finnish), among others, were introduced. The teaching of
logic was, according to Ketonen, confined to the basics and could not as

1An extended version of this article will appear in the Year book of the Vienna Circle
institute. I would also like to thank Oiva’s son Timo for generously providing me with a
copy of Oiva’s unfinished autobiography.
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such, Ketonen speculates, cause any interest. We read in Ketonen’s study
book that he did not take a single course in logic.
According to Timo Ketonen, Oiva’s early interests were algebra and num-

ber theory, which paved the way for the huge interest in Gödel’s first incom-
pleteness theorem, of which he was made aware by his fellow student, Max
Söderman. Nevanlinna also later mentioned the theorem.2 Gödel’s fantastic
result was probably what ignited Ketonen’s interest in formal logic. Keto-
nen writes in the autobiography that he frequently went to evening meetings
of what he called “The philosophical club.” These meetings seem to have
been quite unofficial, usually the group gathered at the home of one of the
professors, e.g., Kaila or Yrjö Reenpää and logic was among the topics dis-
cussed. They also gathered at least once at Söderman’s home. In the study
diary we can read that he later also spent some evenings attending what
he calls “mathematical-logical conferences”. It is unclear at this moment
whether these conferences and the meetings of the “philosophical club” were
the same.
Nevanlinna tried to convince Ketonen to take up function theory —

another witness of Nevanlinna’s faith in Ketonen’s abilities — but Ketonen,
after some contemplation, decided to work on logic. He wrote his master’s
thesis on axiomatic logic, arithmetic, and Gödel’s theorem. The first part
was published (Ketonen, 1938) and used by Kaila as a text book for logic
courses. Ketonen had received the impression from Nevanlinna that some
mathematicians suspected that there was some fault in Gödel’s proof, and
that this fault might be worth uncovering. Ketonen believed that as a
result of his work with the thesis, he succeeded in streamlining Gödel’s
proof somewhat.3

Ketonen kept working on Gödel’s results and made a small improve-
ment to Gödel’s completeness theorem for the predicate calculus in 1941
(Ketonen, 1941). Gödel showed that that either a proposition A is prov-
able, or it is impossible that there does not exist a counterexample. Keto-
nen improved this result so that this counter example can be found directly.
Söderman, who resided in Vienna at the time, reported Ketonen’s result to
Gödel, who admitted that it was indeed an improvement (von Plato, 2004).

2 The Dissertation — Untersuchungen zum Prädikatenkalkül

According to his autobiography, Ketonen had decided already in the spring
of 1938 to go for a dissertation immediately. He went to the university in
Göttingen, most probably with the aid of Nevanlinna’s contacts, who had

2How well Nevanlinna was acquainted with logic, and what he thought of the at the time
completely new discipline, remains debated.
3We hope to investigate this streamlining in a later work.
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worked at the university as a visiting professor in 1936–1937. Kaila had met
Gentzen in Münster in 1936 as well. Ketonen also went to Münster where
he met — among others — Heinrich Scholz with whom there was some
correspondence. Shockingly, the very same night that Ketonen arrived in
Göttingen, 9–10 November 1938, later became infamous as the “Kristall-
nacht” — “crystal night”. In Göttingen, in the autumn of 1938, Ketonen
became Gerhard Gentzen’s presumably first — and also last — student,
although Ketonen had to wait until Christmas to receive a problem from
Gentzen to work on. He recalls Gentzen as a sympathetic young man who
“did not talk much” but mentioned that his chief assignment as Hilbert’s
assistant was the reading (apparently aloud) of “popular” scientific publi-
cations to his professor.
The dissertation (Ketonen, 1944), Untersuchungen zum Prädikatenkal-

kül , is divided into three parts. The first part presents and improves Gerhard
Gentzens sequent calculus by introducing invertible rules for the calculus’
propositional parts,4 part two discusses a certain Skolem normalization of
derivations, and the third part applies the results from parts one and two to
produce a proof of the underivability of Euclid’s parallell postulate from the
rest of the Skolem-axioms for Euclidean geometry. Ketonen was the first to
continue Skolem’s work on geometry (von Plato, 2007b). The invertibility
result will now be presented in detail.

Invertibility of Rules in Gentzen’s LK

A sequent is of the form A1, A2, . . . , Am → B1, B2, . . . , Bn. Capital latin
letters A,B,C, . . . will be used to denote formulas, capital greek letters
Γ,∆,Θ, . . . will be used to denote the (possible) context of a derivation.
Contexts are treated as lists of formulas. The formulas to the left of the
sequent arrow → make up the antecedent, the formulas to the right the
succedent. The sequent arrow can conveniently be read as “gives”. Thus
the sequent A&B → C means that from the assumptions A and B together,
the conclusion C follows. The sequent is read as “A and B gives C”. A
sequent should be viewed as a generalization of the concept of derivability,
with one or more assumptions in the antecedent giving one or more possible
cases in the succedent. We use the parentheses in the usual way, and all
the connectives ¬,∨,&, and ⊃. For the false sentence (and to denote a
contradiction), Gentzen uses a special symbol but we will not need it here.
The only axiom is the initial sequent A → A. To be able to carry out
derivations and proofs within the system, we need logical and structural
rules. The logical rules manipulate connectives whereas the structural rules
manipulate formulas. Derivations are in “tree-form” and begin from initial

4Obviously, invertibility in Ketonen’s sense cannot hold for the predicate part.
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sequents (and possibly contexts) at the end of branches, and end with the
proven sequent at the bottom of the tree, the “root”.5 Below6 are given the
structural and logical rules of Gentzen’s first system of sequent calculus,
which we today call Gentzen LK:

Structural rules for Gentzen LK

Γ→ Θ
LW

A,Γ→ Θ
Γ→ Θ

RW
Γ→ Θ, A

Left weakening Right weakening

A,A,Γ→ Θ
LC

A,Γ→ Θ

Γ→ Θ, A,A
RC

Γ→ Θ, A
Left contraction Right contraction

∆, B,A,Γ→ Θ
LE

∆, A,B,Γ→ Θ

Γ→ Θ, B,A,Λ
RE

Γ→ Θ, A,B,Λ
Left exchange Right exchange

Γ→ Θ, B B,∆→ Λ
Cut

Γ,∆→ Θ,Λ
Cut

Logical rules for Gentzen LK

Γ→ Θ, A Γ→ Θ, B
R&

Γ→ Θ, A&B

A,Γ→ Θ B,Γ→ Θ
L∨

A ∨B,Γ→ Θ

Right conjunction Left disjunction

A,Γ→ Θ
L&1

A&B,Γ→ Θ

B,Γ→ Θ
L&2

A&B,Γ→ Θ

Left conjunction 1 Left conjunction 2

Γ→ Θ, A
R∨1

Γ→ Θ, A ∨B
Γ→ Θ, B

R∨2

Γ→ Θ, A ∨B
Right disjunction 1 Right disjunction 2

A,Γ→ Θ
R¬

Γ→ Θ,¬A
Γ→ Θ, A

L¬¬A,Γ→ Θ
Right negation Left negation

A,Γ→ Θ, B
R ⊃

Γ→ Θ, A ⊃ B
Γ→ Θ, A B,∆→ Λ

L ⊃
A ⊃ B,Γ,∆→ Θ,Λ

Right implication Left implication

5A derivation may of course have only one branch, i.e., have only one initial sequent from
which some other sequent is proven.
6 See (Gentzen, n.d.) for details.
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With invertibility is meant that if a sequent matches the conclusion of a
rule, and if it is derivable, then the corresponding premisses are derivable.
Gentzen’s LK is not invertible. Consider rule R∨2, for example. If it were
invertible, then the sequent A→ B would be derivable because A→ A∨B
is derivable from the initial sequent A→ A. A→ B is not at all a tautology
so it clearly should not be derivable without assumptions in a complete and
consistent system. Thus, the logical rules for left conjunction and right
disjunction need to be replaced with invertible ones, and Ketonen notes
that the rule for left implication will have to be replaced with a rule which
has the same contexts in its two premisses:

Ketonen’s invertible rules for Gentzen LK

A,B,Γ→ ∆
L&

A&B,Γ→ ∆

Γ→ ∆, A,B
R∨

Γ→ ∆, A ∨B
Γ→ ∆, A B,Γ→ ∆

L ⊃
A ⊃ B,Γ→ ∆

The proofs of the invertibility of the rules are easy and short. The ones
given here differ somewhat from those given by Ketonen, specifically so that
when Ketonen introduces the conclusion of a rule the invertibility of which
is to be proved through an instance of its non-invertible counterpart, we
simply introduce the conclusion after the vertical dots that indicate some
possible derivation.

Proof of invertibility of rule L&

A→ A
LW

B,A→ A
LE

A,B → A
B → B

LW
A,B → B

R&
A,B → A&B

...
A&B,Γ→ Ω

Cut
A,B,Γ→ Ω

The proof of the invertibility of rule R∨ is simply a horizontal “mirror
image” of the proof above. In order to prove the invertibility of rule L ⊃,
we show that both premisses are derivable from the conclusion by cut:

A → A
RW

A → A,B
R ⊃→ A,A ⊃ B

...
A ⊃ B,Γ → Ω

Cut, RE
Γ → Ω, A

B → B
LW

A → A,B
R ⊃

B → A ⊃ B
...

A ⊃ B,Γ → Ω
Cut

B,Γ → Ω

With the invertible rules, we can carry out a “root-first” proof search
in an algorithmic fashion, beginning with the sequent we want to prove,
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and then applying the rules in reverse until we reach a situation with only
initial sequents (and possibly contexts). This proof search will terminate, so
it can in theory be done by a computer. Indeed it is possible that Ketonen’s
sequent calculus is the first system that would permit a computer to produce
proofs. It does not matter in which order the rules are applied in reverse,
as the two proofs of → (A ⊃ B) ⊃ (¬B ⊃ ¬A) below illustrate:

A → A
LW¬B,A → A
R¬¬B → ¬A,A
R ⊃→ ¬B ⊃ ¬A,A

B → B
RW

B → B,¬A
L¬

B,¬B → ¬A
R ⊃

B → ¬B ⊃ ¬A
L ⊃

A ⊃ B → ¬B ⊃ ¬A
R ⊃→ (A ⊃ B) ⊃ (¬B ⊃ ¬A)

A → A
LW¬B,A → A
R¬¬B → ¬A,A

B → B
RW

B → B,¬A
L¬

B,¬B → ¬A
L ⊃

A ⊃ B,¬B ⊃→ A
R ⊃

A ⊃ B → ¬B ⊃ ¬A
R ⊃→ (A ⊃ B) ⊃ (¬B ⊃ ¬A)

The modification of the rules does not hamper the properties of the
system, the Hauptsatz, for example, still holds. Kurt Schütte and Haskell
Curry gave cut-free proofs of invertibility in 1950 and 1963 respectively,
Curry with the added result that inversions are height preserving.7

Reactions to the thesis and follow-up

Paul Bernays (Bernays, 1945) wrote a favorable review of Ketonen’s the-
sis in The Journal of Symbolic Logic in 1945, and Kleene notes (Kleene,
1952) that he knows of Ketonen’s calculus only through this review. We
know through several sources, for example (von Wright, 1951), that sev-
eral researchers including Richard Feys, and the already mentioned Curry,
Kleene, and Bernays held Ketonen’s work in high regard. Curry reportedly
(von Plato, 2004) held Ketonen’s work to be the best thing in proof theory
since Gentzen, and the present writer has seen a letter from Curry to Ke-
tonen where the former asks for everything Ketonen has written on logic,
even in Finnish. Arend Heyting wrote a review of the thesis in 1947, but
apparently failed to see its main point and appears instead to view it as
a work on geometry rather than on proof theory. The first international
reference to Ketonen’s work seems to be by Karl Popper in 1947 (Popper,
1947), and Beth uses parts of Ketonen’s calculus in his tableau method8

but cites Kleene and Gentzen, but not Ketonen.

7 See (von Plato, 2007a).
8 See for example (Beth, 1962).
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No more original work on logic by Ketonen appeared after the thesis,
and exactly why this is so is not completely clear. He is known to have
been working on forcing in set theory and even relativity theory (inspired
by previous work on the subject by Kaila) but did not publish any own
results even if survived correspondence suggests that he indeed had worked
out some results of his own. He has also worked on the interpretation of
consistency proofs, many-valued logics, and the application of some of the
results of the thesis on epistemology (von Wright, 1951). A possible reason
as to why he did not continue with logic could be the severe disappointment
he experienced with philosophy of science in general during his visit to the
United States in the 1950’s (Ketonen & von Wright, 1950) and, as is hinted
at in the autobiography, the effects that the second World War brought
with it which possibly steered also his philosophical interests away from
the world of mathematics towards broader philosophical enquiries. Only
one work on logic after the dissertation has been found as a very rough
manuscript of about ten pages, written on a typewriter but with several
hand-written corrections, and containing some notes on epistemology and
geometry, but is nothing like such a polished version mentioned by von
Wright (Ketonen, 1944–1950). We know for certain however, from survived
correspondence, that at least still in the late 1960’s Ketonen tried to stay
up-to-date with recent logical research. He also gave lectures in basic logic
for students at the university. When he was asked in his later years why
he had abandoned logic, Ketonen always remarked abruptly “logic gives me
such headache”. One could perhaps speculate that logic became something
of a spare-time activity, while the main attention was on university politics,
his professorship that he held for over 25 years, between 1951–1977, and on
a philosophy incorporating elements which fall outside those of the natural
sciences.
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