# Introduction to Statistical Machine **Translation**

ESSLLI 2005

Chris Callison-Burch Philipp Koehn

# **Commercially** Interesting

- U.S. has invested in MT for intelligence purposes
- MT is popular on the web -- it is the most used of Google's special features
- EU spends more than €1,000,000,000 on translation costs each year. (Semi-) automating that could lead to huge savings

#### What makes MT hard?

- Word order
- Word sense
- Pronouns
- Tense
- Idioms

# Statistical machine translation

- Find most probable English sentence given a foreign language sentence
- Automatically align words and phrases within sentence pairs in a parallel corpus
- Probabilities are determined automatically by training a statistical model using the parallel corpus

# A long history

- Machine translation was one of the first applications envisioned for computers

• Warren Weaver (1949)
"I have a text in front of me which is written in Russian but I am going to pretend that it is really written in English and that it has been coded in some strange symbols. All I need to do is strip off the code in order to retrieve the information contained in the

• First demonstrated by IBM in 1954 with a basic word-for-word translation system.

# **Academically** Interesting

- Machine translation requires many other NLP technologies
- Potentially: parsing, generation, word sense disambiguation, named entity recognition, transliteration, pronoun resolution, natural language understanding, and real-world knowledge

# Various approaches

- Word-for-word translation
- Syntactic transfer
- Interlingual approaches
- Controlled language
- Example-based translation
- Statistical translation

#### **Probabilities**

• Find most probable English sentence given a foreign language sentence

$$\begin{aligned} p(e|f) \\ \hat{e} &= \arg\max_{e} \ p(e|f) \\ p(e|f) &= \frac{p(e)p(f|e)}{p(f)} \\ \hat{e} &= \arg\max_{e} \ p(e)p(f|e) \end{aligned}$$

# What the probabilities represent

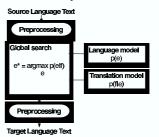
- p(e) is the "Language model"
  - Assigns a higher probability to fluent / grammatical sentences
  - Estimated using monolingual corpora
- p(f|e) is the "Translation model"
  - Assigns higher probability to sentences that have corresponding meaning
  - Estimated using bilingual corpora

# Language Model

- Component that tries to ensure that words come in the right order
- Some notion of grammaticality
- Standardly calculated with a trigram language model, as in speech recognition
- Could be calculated with a statistical grammar such as a PCFG

### Calculating Language Model Probabilities

Unigram probabilities


$$p(w_1) = \frac{count(w_1)}{total\ words\ observed}$$

# Calculating Language Model Probabilities

Trigram probabilities

$$p(w_3|w_1w_2) = \frac{count(w_1w_2w_3)}{count(w_1w_2)}$$

# For people who don't like equations



# Trigram language model

• p(I like bungee jumping off high bridges) = p(I | <s> <s>) \* p(like | I <s>) \* p(like | I <s>) \* p(bungee | I like) \* p(jumping | like bungee) \* p(off | bungee jumping) \* p(high | jumping off) \* p(bridges | off high) \* p(</s> | high bridges) \* p(</s> | bridges </s>)

### Calculating Language Model Probabilities

• Bigram probabilities

$$p(w_2|w_1) = \frac{count(w_1w_2)}{count(w_1)}$$

# Calculating Language Model Probabilities

- Can take this to increasingly long sequences of n-grams
- As we get longer sequences it's less likely that we'll have ever observed them

# Backing off

- Sparse counts are a big problem
- If we haven't observed a sequence of words then the count = 0
- Because we're multiplying the n-gram probabilities to get the probability of a sentence the whole probability = 0

#### Translation model

- p(f|e)... the probability of some foreign language string given a hypothesis English translation
- f = Ces gens ont grandi, vécu et oeuvré des dizaines d'années dans le domaine agricole.
- e = Those people have grown up, lived and worked many years in a farming district.
- e = I like bungee jumping off high bridges.

#### Translation model

 Decompose the sentences into smaller chunks, like in language modeling

• 
$$p(f|e) = \sum_{a} p(a, f|e)$$

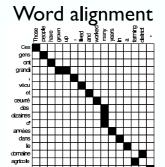
 Introduce another vairable a that represents alignments between the individual words in the sentence pair

# Alignment probabilities

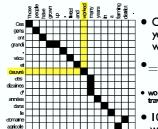
 So we can calculate translation probabilities by way of these alignment probabilities

$$p(f|e) = \sum p(a, f|e)$$

• Now we need to define p(a, f | e)


$$p(a, f|e) = \prod_{i=1}^{m} t(f_j|e_i)$$

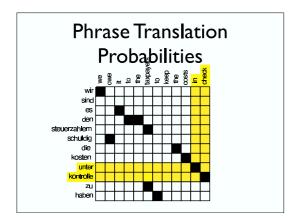
# Backing off

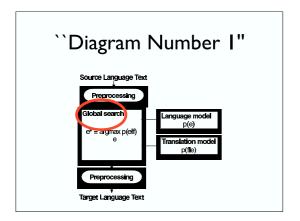

- $.8 * p(w_3|w_1w_2) + \\ .15 * p(w_3|w_2) + \\ .049 * p(w_3) + \\ .001$
- Avoids zero probs

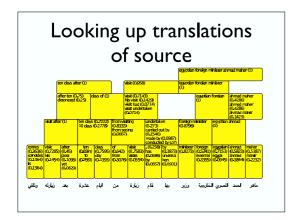
#### Translation model

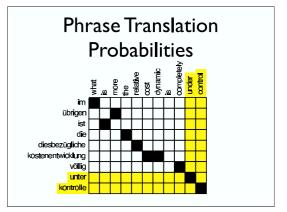
- How do we assign values to p(f|e)?
- $p(f|e) = \frac{count(f,e)}{count(e)}$
- Impossible because sentences are novel, so we'd never have enough data to find values for all sentences.




# Calculating $t(f_j|e_i)$





- Counting! I told you probabilities were easy!
- $\bullet = \frac{count(f_j, e_i)}{count(e_i)}$
- worked... fonctionné,
   travaillé marché ceurré
- 100 times total 13 with this f. 13%


# Calculating $t(f_i|e_i)$

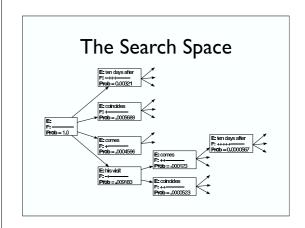
- Unfortunately we don't have word aligned data, so we can't do this directly.
- OK, so it's not quite as easy as I said.
- Philipp will talk about how to do word alignments using EM on Wednesday.










#### Phrase Table

 Exhaustive table of source language phrases paired with their possible translations into the target language, along with probabilities

| das thema | the issue   | .51 |
|-----------|-------------|-----|
|           | the point   | .38 |
|           | the subject | .21 |

# The Search Process AKA ``Decoding"

- Look up all translations of every source phrase, using the phrase table
- Recombine the target language phrases that maximizes the translation model probability
   \* the language model probability
- This search over all possible combinations can get very large so we need to find ways of limiting the search space

