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Chapter 1

Overview

In this work, we present NLSH, a file manager for UNIX-like operating sys-
tems with user interface in natural language, namely the Czech language.

1.1 Natural language as a user interface

By the term “user interface” we mean a collection of methods using which
the user interacts with a computer system, i. e. issues commands and
queries its state. There are many interface styles, but currently the most
prevalent forms are graphical user interfaces and command-line interfaces.

To use a natural language to interact with the computer is an appealing
perspective: indeed, natural language is a flexible and expressive form of
communication we use in our daily lives and therefore we are experienced
in it. The users of an application that would allow such an interaction
would therefore not be required to learn a new artificial language1 in order
to work with the system, which would render it much more accessible
than without such possibility.

Moreover, in combination with speech processing, a system that uti-
lizes natural language as a form of input would not require the user to
type her request on a keyboard. This would free her hands and therefore
increase her productivity.

1.1.1 Problems

However, according to [5], it is a “conventional wisdom” in the field of
human-machine interaction that negatives of the usage of natural lan-

1This, of course, includes formal languages such as SQL, but also symbols, icons and
colour guidelines in graphical user interfaces.
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guage as a user interface overweight its positives, at least in cases where it
is the only interface style.

There are three main problems which every system that employs natu-
ral language as an interface style has to tackle in order to be useful to their
users:

• Not enough information. When speaking to each other, people con-
vey only so much information to each other that they deem sufficient
to successfully decode the meaning. The message itself is thus de-
pendent not only on the context, but also on the knowledge of the
world and reasoning skills of the recipient.

• Conceptual vs. language errors. If a request from the user is not
understood by the system, the user is typically asked to reformulate
it and try again. While this may lead the user to believe that the sys-
tem did only fail to parse the language construction, her query may
as well be beyond the conceptual coverage of the the system. From
the system’s perspective, such error states are very hard to detect.

• Antropomorphism. Since intelligence is an essential element in un-
derstanding (unrestricted) natural language, any system that would
engage in conversation with a human user is likely to be attributed
at least some intelligence. This may lead to excessive expectations of
system’s potential and to a frustrating work experience.

Therefore, in all situations, the user should be encouraged to be ver-
bose and precise in her requests and should be aware of the system’s po-
tential. Also, it should be obvious to her that the system is not a real per-
son, but a computer with minimal intelligence and reasoning capabilities.

1.1.2 Implementations

For a thorough survey of available systems that provided natural lan-
guage interfaces to databases, as well as the summary of problems and
approaches to their solution, the reader is referred to [1]. Although the
survey is more than 12 years old, the author of this text is not aware of any
similar overview that has been made since then.

1.2 A natural language file manager

NLSH is a file manager. File managers are software applications that allow
the user to manipulate with files and directories. This manipulation in-
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cludes deletion, copying, moving or creating them.
The basic idea behind NLSH is that the elementary unit of each opera-

tion on files2 is a list of files over which the operation is to be performed.
NLSH tries to deliver a novel approach to the creation of such lists. The
method that “ordinary” file managers offer the user to create such lists is
more or less explicit – the user usually picks target files by a cursor in the
file manager window – and is essentially an enumeration.

Instead, NLSH treats the file system as a universe populated by objects
that have some properties and provides means for selecting subsets of all
objects using propositional logic. This allows the user to construct a list of
files merely by describing their properties instead of having to name each
member.

For instance, if the user wanted to work with all files in directory X,
it would seem natural to describe the target of the operation as files whose
location is equal to X – i. e. to treat file location as a property of that file. On
the other hand, a graphical file manager would force the user to actually
enter directory X and manually select all files.

The advantage of descriptive approach taken by NLSH is that the user
can formulate her queries in a complex language that is closer to her inten-
tion and, importantly, can be further processed by the computer. Looking
at the example above, it is considerably easier to interpret the action of get-
ting files whose location is equal to X as two operations, enter directory X and
select all files, than to infer that these two operations in this order determine
files with the mentioned property.

However, the querying mechanism forms only a half of the whole sys-
tem. In order to fulfill its function, NLSH must find interpretation of each
(suitable) sentence in the input natural language; only after such inter-
pretation is found, the querying mechanism is of some use. Since a file
manager must be able to manipulate objects in the system as well as an-
swer questions about their properties, the mechanism for matching inter-
pretations to sentences must be flexible enough to support both of these
requirements.

1.3 Structure of the thesis

The structure of the thesis is as follows: Chapter 2 describes the query-
ing mechanism used in NLSH to create lists of objects, its properties and
implementation.

2What we mean here is an “external” operation, i. e. an operation during which the
contents of the manipulated file do not change.
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Chapter 3 is concerned with the design, architecture and implementa-
tion of the interpretation system that assigns each sentence a meaning and
its using the aforementioned querying mechanism.

4



Chapter 2

Querying mechanism

The querying mechanism of NLSH is a descriptive formal language based
on propositional logic, with some extensions that allow formulation of
queries beyond its scope. Although designed primarily with a UNIX-like
computer system in mind, it is fairly domain-independent and extensible.

This chapter describes in detail the formal properties of the system and
its implementation.

2.1 Formal description

Each query is related to a certain state of the world; we denote the set of all
possible states of the world Ω. Since NLSH is a real-world application, the
concept of the state of the world is different from “virtual-world” mecha-
nisms such as the situation calculus in planning – operations in such sys-
tems typically take one state of the world and yield another, which is then
given to next operation and so forth.

In NLSH, the state of the world is a formal representation of the “real”
world state: it comprises not only the internal status of the computer sys-
tem, such as the current hierarchy of file system or the layout of the user’s
screen, but also influences of the outer world, such as time.1

The querying mechanism is therefore unable to answer hypothetical
questions. Any effort to add planning and deep inference capabilities
would obviously require the addition of a whole new layer of operations.

1Generally, every input is related to the outer world – be it the movement of com-
puter mouse or the movement of people in a nearby street in case the computer has a
camera attached. We may even extend our definiton of “input” here to include hardware
malfunctions etc.
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Although it might be a desirable feature for a real-world system, NLSH

does not implement such a layer.
Another important note concerning the reality of the world is the lack

of atomicity of operations. Most, if not all, operations are sequences of
suboperations and it usually does take some time before their execution
is done. From the practical point of view, this means that the state of the
computer may well be changed before the operation is finished and that
it is only a matter of chance whether the change is related to the data the
operation works with. In such case, the result will be inaccurate.

We should also take this into account in the following description.
However, this would make the text unnecessarily hard to follow; there-
fore, for the sake of simplicity, we will ignore this fact in the further text
and will treat operations and queries as atomic.

2.1.1 Objects, types and attributes

NLSH operates on two entities present in every UNIX-based system: files
and users. These are called objects in NLSH’s terminology. Each object is
fully determined by a unique identifier; for files, the identifier is the abso-
lute path to them in the file system, users are identified by their UID.2

From the view of underlying layers, however, identifiers are atomic –
given an intentifier, NLSH does not deduce anything about the properties
of the object it describes.

Instead, identifiers are “handles” – implementation-dependent values
that determine how operations and queries on given objects are to be per-
formed. For instance, a query about the object name triggers different
actions for files and users: for files, the name can simply be obtained from
the path, but for users, a user database needs to be consulted. This makes it
easy to change the underlying implementation of current querying primi-
tives, but also allows a simple addition of new entities such as user groups
or open network connections to the system.

In the following, Θ denotes the set of all object identifiers.

Attributes

Every object in NLSH has a set of attributes. Or, more precisely, given an
object, an attribute and a constraint, NLSH can decide whether the con-
straint on the attribute is valid for the given object. This distinction is

2UID means user identifier. In UNIX and similar operating systems, UID is always a
non-negative integer.
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more elaborated upon in section 2.2.1; for now, let us just point out that
it is not necessary to know the actual value of the attribute – for example,
if we already know that a file is smaller than 1 kilobyte, we may safely
conclude that it also smaller than 2 kilobytes.

NLSH defines 13 attributes (see table 2.1 for an overview). A denotes
the set of all attributes.

Table 2.1: Attributes in NLSH

Attribute (∈ A) Description Typical value
objtype object type t ∈ T
name object name (filename or username) string

location file location string
ctime date and time of last change timestamp
mtime date and time of last modification timestamp
bytesize size in bytes integer
owner object owner uid
homeof users for which this is home directory set of uid’s

files contents of directory set of file-id’s
contents contents of file string
target symbolic link target string
exists object existence flag boolean
uid UID represented by the object uid

Note that none of the attributes is related to file access permissions.
This feature of UNIX-like operating systems is not reflected in NLSH.

Object types

Each existing object has a type, which is represented in the attribute system
as attribute objtype ∈ A. There are 4 object types in NLSH (see table 2.2 for
their listing), we denote the set of all object types T .

Define relation PT ⊂ A×T . If attr ∈ A and type ∈ T so that (attr, type) ∈
PT , we say that attr is compatible with type; object that has type type neces-
sarily has attribute attr and object with attribute attr may be of type type.

Relation PT , as implemented in NLSH, is presented in table 2.3.
No hierarchy of types is defined – although types regular_file, directory

and symlink share most of the attributes, they do not have a common an-
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Table 2.2: Object types in NLSH

Type (∈ T ) Description
regular_file regular file
directory directory
symlink symbolic link

user user

Table 2.3: Validity of attributes for given types

regular_file directory symlink user

objtype × × × ×
name × × × ×

location × × ×
ctime × × ×
mtime × × ×
bytesize ×
owner × × ×
homeof ×

files ×
contents ×
target ×
exists × × × ×
uid ×

8



cestor. This is a clear limitation of the system and a candidate for future
improvement.

2.1.2 Restrictions

The formal language based on propositional logic that allows the user to
describe the properties of objects she wants to work with is called the lan-
guage of restrictions3 in NLSH’s terminology.

The formal language of restrictions

Define restriction as follows:

(1) A pair (attr, rel), where attr ∈ A is an attribute and rel is an unary
relation (property) is restriction. We call such restriction an elementary re-
striction.

(2) If R is a restriction, then ¬R is a restriction.

(3) If R1, R2 are restrictions, then R1 ∧R2, R1 ∨R2 and R1 ⇒ R2 are restric-
tions.

Restriction semantics

To assign semantics to restrictions, we define function sat, which, given an
object identifier θ ∈ Θ and a state of the world ω ∈ Ω, assigns each restric-
tion a truth value:

(1) Let R = (attr, rel) be elementary restriction. Let val be the value of
attribute attr of object θ in the world state ω. Then satθ,ω R = true iff
val ∈ rel.

(2) Let R be restriction and R = ¬R′. Then satθ,ω R = ¬ satθ,ω R′.

(3) Let R1, R2 be restrictions, R′′ = R1 ∧ R2. Then satθ,ω R′′ = satθ,ω R1 ∧
satθ,ω R2. Similarly for R1 ∨ R2 and R1 ⇒ R2.

Given an elementary restriction R, we may treat satθ,ω R as a propo-
sitional variable. Thus, any restriction may be converted to a formula in

3Expressions in this language restrict the set of all objects in the world to the desired
subset.
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propositional logic merely by applying rules (2) and (3) on non-elementary
restrictions and substituting propositional variables for elementary restric-
tions.

Hence, every restriction, being a propositional formula, can be con-
verted to its disjunctive normal form (DNF). Disjunctive normal form of a
formula is a disjunction of clauses, where clauses are conjunctions of liter-
als. Literals are either negated or non-negated propositional variables, in
our case elementary restrictions.

Observe that for R = ¬R′, R′ = (attr, rel) and type ∈ T object type of θ
in ω compatible with attr, it is true that

satθ,ω R = satθ,ω(attr, rel)

where rel is the inverse unary relation to rel. The compatibility of type
with attr is essential: if (attr, type) /∈ PT , the equation would not hold.

Thus, if we assure this condition, we may treat every literal in a clause
of a restriction’s DNF as an elementary restriction.

In order to satisfy a DNF clause, all literals (i. e. elementary restric-
tions) in it must be satisfied. The fact that clauses are in disjunction means
that if the formula as whole holds for the objects, at least one of the clauses
is satisfied. DNF clause is therefore the basic unit of restriction evaluation.

Possible types of a clause

To make sure that negated literals may be evaluated as elementary restric-
tions as in the observation above, NLSH assumes that if attribute attr is
mentioned in an (elementary) restriction, any object that satisfies that re-
striction is of type compatible with attr.

For example, restriction R = (bytesize, 6= 0) requires that any object
that satisfies R has type type so that (bytesize, type) ∈ PT , that is, type =
regular_file. Even though objects with type user do pass the condition that
the value of their bytesize attribute is not equal to 0 (for they do not even
have it), they are discarded.

Thus, given a DNF clause, this principle does not only provide means
for its simpler evaluation, but also allows us to determine the set of pos-
sible types of objects that satisfy it, which is essential in order to generate
suitable objects efficiently.

Let C = L1 ∧ . . . ∧ Ln be a DNF clause. Since we may now safely treat
negated literals as elementary restrictions, Li = (attri, reli), where reli is
either the unary relation of the elementary restriction in case the literal is
non-negated, or the inverse relation to the underlying restriction if it is
negated.
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We define function posstypes that assigns each clause a set of possible
types of objects that satisfy it as follows:

posstypes C =
n⋂

i=1

{typei |(attri, typei) ∈ PT}

2.1.3 Constructors

At this point, we already have at our disposal a mechanism to create lists
of objects by means of merely describing their properties.

However, that mechanism has limits.
Although expressive enough to describe the actual properties of ob-

jects, propositional logic is unable to describe their relations with other ob-
jects. For instance, the language of restrictions as it has been defined in
2.1.2 has no means to describe objects such as “the biggest file” or “the
user with the highest UID”.

An obvious solution to this problem would be to base restrictions on
first-order logic instead of propositional logic. Indeed, “the biggest file”
could then be described as:4

θ : ∀θ′(bytesize of θ′ ≤ bytesize of θ) ∧ (objtype of θ = regular_file)

However, NLSH pursues another direction: instead of extending the
language, it presents a mechanism to post-process the results returned by
“propositional” restrictions.

Orderings and selectors

NLSH comes with two concepts that aim to supplant the extension of re-
strictions to first-order logic. They do not touch the process of restriction
evaluation; their area of operation is the resulting set of object identifiers
that satisfy the restriction.

Since the result of the restriction evaluation is a set, in order to be pre-
sented to the user or supplied to an operation as an argument, it needs
to be serialized. By default, when converting the set to a list, NLSH does
not order it in any “sophisticated” way – it is simply sorted by the object
identifiers. While this may be sufficient in many cases, NLSH also allows
to define the order.

Such facility is called ordering in NLSH’s terminology. Ordering is a
pair (attr, order), where attr is an attribute and order is either ascending

4The world state is omitted for the sake of clarity.
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or descending. A concept similar to ordering is needed in any system that
supports commands such as “list all files sorted by age”.

The second concept is called selector. Selector is a function that picks a
specific range of objects from the list. It is important to note that selector
comes to action after the set is converted to a list by an ordering.

By combining ordering with an appropriate selector, the user can for-
mulate queries such as “the biggest file” or even “the second biggest file”.
All that is needed to do is to sort the list of files by size in descending or-
der, and pick the first or second element of the list. The second example,
in particular, illustrates the simplicity of this approach: such query, albeit
possible, would be considerably more complex in first-order logic.

Shapes

A shape is an additional constraint on the number of elements in the result-
ing list. When the user expresses her desire for “the empty file in directory
Y”, the restriction itself does not contain the information that the user ex-
pects that there will be exactly one file with this property. This additional
information allows NLSH to appropriately react when e. g. there is no
empty file in directory Y or there are more than one such file.

Constructors

Thus, constructor is a 4-tuple (S, L, O, R), where S is a shape, L is a selector,
O is an ordering and R is a restriction. The shape, selector and ordering
do not need to be specified.

2.2 Implementation

Being a real-world application, NLSH has to find compromises between
pedantic implementation of the entire system and its practical expressive-
ness and effectiveness.

2.2.1 Restriction evaluation

Since the functionality of the whole querying mechanism revolves around
the formal language of restrictions, we shall start by connecting the theory
with the real world.

In the state of world ω, given an object identifier θ ∈ Θ and an elemen-
tary restriction R = (attr, rel), how do we determine the value of satθ,ω R?

12



The answer to this question depends on the type of relation rel: the
target of rel may be either a value such as string or integer, or an object
identifier (or a set of object identifiers).

Restrictions of values

Each object identifier determines the method of handling the represented
object. For instance, the value of attribute exists is obtained by searching
file /etc/passwd for users and by executing function lstat() for files.
In NLSH’s terminology, these methods are called property providers. See
table 2.4 for their summary.

Table 2.4: Property providers in NLSH

Attribute Property provider for files Property provider for users
objtype lstat() call automatically set to user

name from the identifier /etc/passwd scan
location from the identifier
ctime lstat() call
mtime lstat() call
bytesize lstat() call
owner lstat() call
homeof /etc/passwd scan

files readdir() call
contents grep execution
target readlink() call
exists lstat() call /etc/passwd scan
uid from the identifier

For each object identifier, NLSH stores its properties in a data structure
called object cache. The object cache keeps the access to I/O at a necessary
minimum. For each attr ∈ A, a set of known valid properties (unary re-
lations) is kept; appropriate property providers are consulted only if the
value cannot be inferred from the already known properties.

When an object changes, the corresponding item in the cache becomes
outdated. However, when the object is accessed the next time, the change
is detected and all stored properties are rechecked.

For attributes such as bytesize or owner, the cost of storing of the actual
value and its retrieval is negligible, but, the value of attribute contents can
be much larger than the volatile memory of the computer. By using this

13



mechanism, NLSH avoids storing the entire files as well as unnecessary
executions of grep 5.

Comparison restrictions

When the target of the unary relation is an object identifier tgt, objects θ
and tgt are compared. The actual method of comparison is again deter-
mined by handles of both objects. For most attributes, a simple projection
of their values is sufficient; there are, however, attributes that need special
treatment.

Table 2.5 lists these special attributes; i. e. the comparison of objects by
attributes that are not mentioned in the table is performed by projecting
their values and comparing these.

Table 2.5: Special object comparison methods

Attribute θ tgt Comparison method
location file file compare value of location to the full path to tgt
owner file user compare value of owner to the UID of tgt
homeof file user compare value of homeof with {tgt}
contents file file execute cmp on the two files
target file file compare value of target to the full path to tgt

2.2.2 Construction

The problem of getting all objects that satisfy restriction R in world state
ω is equal to the problem of constructing set

SR = {θ ∈ Θ| satθ,ω R = true}

Function g : Ω → P (Θ) is called generator. Generator ν(ω) = Θ is called
the universal generator.

We call set
Cg,R = {θ ∈ g(ω)| satθ,ω R = true}

the set constructed using generator g. Obviously, for each g generator and R
restriction, Cg,R ⊆ SR. For the universal constructor, Cν,R = SR.

5grep is a standard UNIX tool for finding text patterns in files.
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For finite Θ, we can simply follow the definition and use the universal
generator to obtain SR.

For infinite Θ, however, the universal constructor cannot be used. That
is the case of NLSH – although user identifiers are of limited range6, the
number of possible paths in the file system is virtually infinite.

It is therefore vital to reduce the number of generated object identi-
fiers to a finite number. By default, only existing objects are generated.
Nonexistent objects may also be generated, but only as a special case.

Separated generation

As noted in 2.1.2, given a DNF clause of a restriction, it is possible to de-
termine all allowed types of objects that satisfy it. Therefore, each object
type in NLSH has its own generator.

Since each generator is now concerned only with objects of a specific
type, it “knows” which attributes are present and which of them can be
used in their conversion to an object identifier. If the supplied attribute
values fully determine the object identifier, the generator stops and returns
the identifier; if not, the system needs to be traversed. Note that the first
case is also the only way to construct a nonexistent object.

For example, when constructing objects of type regular_file, the object
identifier is formed by concatenating the values of attributes location and
name. Thus, if the restriction specifies values of both these attributes,
the generator returns the identifier without actually testing whether it is
present in the file system.

But what to do if none of the two attributes is specified? At that point,
the generator would have to return object identifiers of all existing objects
of the given type. For users, this not a serious problem as the number of
users in the system is reasonably low. For files, however, traversing the
entire file system is a very costly operation. For the sake of efficiency, file
generators in NLSH return an empty set in such case and signalize that
they refused to work. The caller may then try to add another restriction to
the clause (such as (location, = CWD), CWD denoting the current working
directory).

The algorithm of construction

Given restriction R, the algorithm of construction of set CR is as follows
(let ω be the state of the world at the moment of construction):

6due to their representation in the computer
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1. Convert restriction R to its DNF, C1 ∨ . . . ∨ Cn.

2. For i = 1 . . . n:

(a) For each type t ∈ posstypes Ci, call the corresponding object
generator and supply it with Ci. Denote the result of genera-
tion Gt.

(b) G :=
⋃

t Gt

(c) Si := {g ∈ G|satg,ωCi = true}

3. CR :=
⋃n

i=1
Si

After CR is constructed, the post-processing takes place in this order:

1. Apply ordering.

2. Apply selector.

3. Apply shape.

2.2.3 Treatment of nonexistent objects

The mechanism described in this chapter is well-suited for querying about
the current state of the system, but its performance in tasks pertaining
to its change is limited to changes of objects that already exist (such as
renaming of files). Adding new objects to the system may be problematic.

In general, generating nonexistent objects necessarily poses efficiency
problems. If we assume that the number of all existing objects in the sys-
tem is always finite and that Θ is infinite (as in NLSH), the time to generate
“all files that do not exist” is necessarily infinite.

However, some actions, such as the creation of directory7, require an
argument that does not exist at the time of interpretation. To assure that,
the current implementation changes all elementary restrictions except for
location and name to (exists, = false). (See Section 2.2.2.)

Because object identifiers carry only the information about methods of
manipulation with the represented object, they cannot be used for addi-
tion of objects that need more information that is contained in such han-
dles – for instance, when adding a user, the user name must be specified.
Since all users are represented by their UID, there is no possible way to
implement such an action in NLSH. (For directories and files, however, the
handle is sufficient.)

7Which is also the only such action in the current implementation of NLSH.
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Therefore, in order to allow such actions, the identifiers would need to
be enriched with more information.
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Chapter 3

System architecture

NLSH works with Functional Generative Description (FGD), which is a
stratified dependency linguistic framework devised since 1960’s by a team
led by Petr Sgall at the Charles University in Prague. Thanks to the cre-
ation of the Prague Dependency Treebank (PDT) for Czech language, which
uses FGD as its theoretical background, tools for automatic annotation of
plain text sentences to structures used by the treebank are available.

Each sentence in PDT has four layers of interpretation, each serving as
the basis for the next one: the word layer, in which the sentence is divided
into words and punctuation, the morphological layer, in which each word is
assigned a morphological tag, the analytical layer, in which dependencies
between words are linked, and finally the tectogrammatical layer, in which
the sentence is represented by a dependency structure where each node is
assigned a functor, that is, its semantic function in regard to its parent.

NLSH works with the tectogrammatical representation of the sentence
and tries to convert it to a symbolic expression of the problem, using
the querying mechanism described in Chapter 2. Due to the distance of
tectogrammatical layer to the surface representation of a sentence, NLSH

needs not to worry about the surface and can focus on the semantics part.
None of the automatic annotation tools is fully accurate, and due to

the nature of their usage (the output of each of them being the input of the
next one), the error is cumulative. As a result, the output of the last step,
the tectogrammatical analysis, is often incorrect. NLSH has to cope with
that issue.

Since PDT is a treebank of sentences in Czech language, the automatic
annotation pipeline works only for Czech. Thus, the natural language
the user communicates with NLSH is the Czech language. However, the
method itself is independent of language – if tools for tectogrammatical
analysis of other languages were available, NLSH could be ported to these
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as well.

3.1 Concepts

The following section summarizes the main properties of the method used
in NLSH to interpret input sentences.

3.1.1 Targets

Constructors described in Chapter 2 require the user to explicitly specify
all the properties of objects she wants to work with. This rarely happens in
real-world conversations, where the user may for instance use pronouns
to refer to objects she mentioned earlier. Moreover, mere constructors are
not capable of expressing sets of objects such as “all files except file X” or
“all files except the biggest one”.

NLSH therefore defines additional types of expressions that can be con-
verted to a list of objects. These are called targets. There are four types of
targets:

• Constructors. Constructors are 4-tuples (S, L, O, R), where S is a
shape, L is a selector, O is an ordering and R is a restriction (the
definition is identical to that in Section 2.1.3).

Corresponding example: “the biggest file in directory X”.

• References. These constitute references within the context of the di-
alogue and always represent a target that has been used earlier in the
discussion. The process of resolving references is described in 3.1.2.

Formally, references are 4-tuples (Sr, Lr, Or, Rr), where Sr, Lr, Or and
Rr are constraints on shape, selector, ordering and restriction, respec-
tively. None of the constraints is required, which means that each of
them may be left unspecified.

Corresponding example: “that file”.

• Filters. Filter consists of constraints on restrictions, ordering, selec-
tor and shape. Given a target, the result of the construction of a filter
is a list of objects obtained by constructing the target and keeping
only objects that satisfy the additional conditions.

Filters are 5-tuples (Sf , Lf , Of , Rf , Tf), where Sf , Lf , Of and Rf are
constraints on shape, selector, ordering and restriction, respectively;
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Tf is the underlying target. As in references, constraints Sf , Lf , Of

and Rf are allowed to be unspecified.

Corresponding example: “the oldest of them”.

• Exceptions. Given targets A and B that represent objects SA and SB ,
respectively, the result of the construction of this target is SA \ SB .

Formally, exception is a pair (A, B).

Corresponding example: “all of them except the oldest”.

Targets are independent of the system context (that is, the state of the
world and system settings). Because of that, it would not be possible to
use the “current user” and “current working directory of the system” as
arguments of other targets or even as separate targets.

Since such feature would severely limit the usability of the system,
NLSH defines both of them as symbolic targets; their construction (which
always occurs within a context) is done simply via their conversion to the
corresponding constructors.

After that, since they are no more than “ordinary” constructors, the
special information that they denote – for instance, the current working
directory – is lost and cannot be retrieved again.

3.1.2 Context

The user’s feeling of dialogue with NLSH is mostly an illusion; NLSH has
no notion of the dialogue context except that it remembers targets that
have been mentioned in the conversation.

The items stored in the dialogue memory are constructors, filters and
exceptions – references and symbolic targets are converted to these types
of targets (instantiated) prior to the point at which they are put into the
memory and thus do not occur in it.

Structure of the dialogue memory

The actual usage of dialogue memory in conversation is inspired by [2].
Referenced targets are “shifted up” to reflect the fact that they were just
used and have been refreshed in the dialogue.

The dialogue memory in NLSH is divided to a global and a local part.
References search only the global memory. When a reference is success-
fully resolved, the referent is removed from the global memory and is
pushed to the local memory. This means that no target can be referenced
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to more than once during the construction phase, i.e. within one request
from the user.

After the construction is finished, all items from the local memory are
pushed to the global memory in the same order as in which they were
inserted. (The local memory is therefore a FIFO.)

This effectively implements the “chaining” of utterances where the fo-
cus of one utterance becomes the topic of the next utterance (for definition
of the terms topic and focus see [8]), given the left-to-right order of traver-
sal of input tectogrammatical trees where nodes are ordered from topical
to focal by definition of the tectogrammatical layer. In other words, if two
objects from one utterance could be considered as antecedents of a refer-
ence, NLSH assumes that the user refers to the less topical one of them.

Reference resolution

As defined in 3.1.1, reference is a 4-tuple (Sr, Lr, Or, Rr) that constitutes
constraints on restrictions, ordering, selector and shape of the intended
target. None of these constraints is required, i. e. it is allowed that some
or even all of them are not specified.

How do we decide whether a target T from the (global) memory satis-
fies these constraints, and can therefore be the antecedent?

• Let T = (S, L, O, R) be a constructor. T satisfies the constraints if and
only if (for constraints specified in the restriction) it is true that Sr

covers S, Lr = L, Or = O and for each θ ∈ Θ for which satθ,ω R = true
also satθ,ω Rr = true.

• Let T = (Sf , Lf , Of , Rf , Tf) be a filter and let Tf be a target storable
in the memory (i. e. no reference or symbolic target). Denote i(T )
constructor obtained from T followingly:

– If Tf = (S ′′, L′′, O′′, R′′) is a constructor, then

i(T ) = (S ′, L′, O′, R′)

where each of S ′, L′ and O′ equals S ′′, L′′ and O′′ if the con-
straints corresponding to them are not defined, and is equal to
the (defined) constraints Sf , Lf , Of otherwise. If Rf is defined,
R′ = Rf ∧ R; R′ = R′′ otherwise.

– If Tf = (S ′′

f , L′′

f , O
′′

f , R
′′

f , T
′′

f ) is a filter, then

i(T ) = i((Sf , Lf , Of , Rf , i(T
′′

f )))
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– If Tf = (A, B) is an exception, then

i(T ) = i((Sf , Lf , Of , Rf , i(A)))

Then T satisfies the constraints if and only if i(T ) satisfies the con-
straints.

• Let T = (A, B) be an exception. T then satisfies the constraints if and
only if A satisfies them.

The most recently inserted target of those that satisfy the constraints is
deemed to be the antecedent. In further processing, it is used as if the user
has mentioned it directly.

3.1.3 Readings

NLSH assigns an interpretation, or reading in its terminology, to each node
of the tectogrammatical tree. Such reading depends on the readings of
the node’s children and therefore is equal to the reading of the entire sub-
tree. The reading of the root node is then the interpretation of the whole
sentence.

We distinguish inner and root readings. Inner readings are a matter of
implementation and are not directly visible to higher layers of the mecha-
nism. However, it is the accuracy and quality of these readings, on which
depends the functionality of the system.

Root readings, which are the interpretations of sentences, are of three
types: actions, queries and replies. Actions are commands that change the
state of the world and are typically represented by imperative sentences.
Queries are commands that do not change the world, but merely examine
it; most often, they correspond to sentences in interrogative mood. Replies
are the user’s answers to questions posed by the server.

Inner readings

Inner readings are of diverse types, ranging from flags denoting that the
parent node is a reference or that the given node is the focus of the sen-
tence, to elementary restrictions and targets.

The current implementation of NLSH is tailored to handle a test suite
of 7 scenes containing 44 user utterances in total (see Appendix A for a
complete overview), which, when converted to tectogrammatical trees,
contain 132 inner nodes. There are 49 rules for inner readings; therefore
roughly each third node has its own rule.
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Root readings

The number of rules that match root readings is considerably smaller, as
there are only 44 sentences in the test suite and thus only 44 root nodes.

Root readings are also much simpler than rules for inner nodes – for
instance, the rule for matching the action of deleting a directory merely
checks the sentence mood (which must be imperative), that the actor’s
reading is “you” and that the patient is a target. This target is then the
argument of the operation.

In total, there are 16 rules for queries, 5 for actions and 1 for replies.

Rule matching

Each rule that assigns reading R to a tectogrammatical node N can be
written as

(P, C) → R

where P are necessary tectogrammatical properties of the node (such as
the required values of grammatemes) and C is a set of necessary readings
that have been assigned to the node’s children.

Let CN denote the readings assigned to children of N . Then the rule
is said to match node N (N has reading R) if and only if N satisfies P and
C ⊆ CN .

There may be more than one rule matching the node and the readings
of its children; in such case, multiple results are returned, but the rules
cannot be combined.

Greediness

In order to allow the disambiguation of root readings in case there is more
than one such reading, a “quality” measure of readings needs to be de-
fined. The metric used in NLSH is called greediness and is equal to the sum
of elements in C of each rule applied in process of obtaining the given
reading. Thus, greediness of each reading is the number of tectogrammat-
ical nodes it is based on.

Formally, let N be a tectogrammatical node, R reading and U the set of
all rules for matching of readings. Let u = (P, C) → R, u ∈ U be a rule
that matches N . For each c ∈ C, let n(c) denote the child node of N that
corresponds to reading c.

Then, the function gr that assigns greediness to each each pair (N, u) is
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defined as follows:

gr(N, u) = 1 +
∑

c∈C

max {gr(n(c), v)|v ∈ U, v matches n(c)}

3.1.4 Instructions

The ultimate goal of the processing is to convert every reading to a se-
quence of instructions. It is assumed that every sentence consists of one
or more instructions; in this model, compound sentences are allowed, but
since they introduce a new array of problems, they had not been the focus
of NLSH and are not supported. (The test suite contains a mere 1 com-
pound sentence, #15).

Table 3.1 summarizes the instructions (and therefore the possible scope
of operations) in NLSH.

Table 3.1: Instructions in NLSH

Instruction Description
output Send formatted output to the user

change_wd Change working directory
create_dir Create a directory
delete_file Delete a file
move_file Move a file
copy_file Copy a file

3.2 Mechanism of action

NLSH operates in two input modes:

• Command mode. The user is expected to enter a command or query.
This is the standard input mode.

• Acknowledge mode. In this mode, NLSH expects the user to express
a reply to a question posed by the server earlier in the discussion
(in the previous step). The current implementation of NLSH asks the
user only boolean questions, e. g. if it really should delete the files
the user had asked for. The user is therefore expected to reply either
positively or negatively.
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NLSH processes one user request at a time and works in loop until it is
signalled to shut down. The loop goes as follows:

1. Read input from the user.

2. Convert the input to a tectogrammatical tree.

3. Apply structural transformations.

4. Find root readings.

5. Pick the best reading. If this fails, signalize that the system did not
understand the input and go to 1.

6. If the system is in Command mode:

(a) Construct targets and convert the reading to a list of instruc-
tions.

(b) If there is an instruction that needs the user’s confirmation, switch
to Acknowledge mode and store the list of instructions. Send a
request for confirmation to the user and go to 1.

(c) Otherwise, execute the instructions and go to 1.

If the system is in Acknowledge mode:

(a) If the reading is a reply, switch to Command mode and evaluate
it: if it is positive, execute the previously stored instructions and
go to 1, if negative, go to 1 without doing anything.

(b) If the reading is an action or query, switch to Command mode
and go to step 6 (re-evaluate the reading in Command mode).

(c) Otherwise, send a request for confirmation to the user and go
to 1. Stay in Acknowledge mode.

The following sections describe some parts of the process in detail.

3.2.1 From plain text to a tectogrammatical tree

The automatic annotation tools have been designed and trained on data
from the Prague Dependency Treebank and as such, they follow its inter-
pretation of FGD as having four layers. Each of them serves as the input to
the next one, starting with segmentation of the plain text string to words.
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NLSH treats text enclosed within apostrophes as a literal string. There-
fore, the tokenization of the sentence needs to be slightly changed so as to
treat such portion of text as a single word.1

The morphological tagging is provided by a statistical tagger (see [3]).
Since literal strings cannot be expected to be assigned any reasonable tag
from the tagger, there is a post-processing phase, during which all literal
strings are tagged as singular masculine inanimate nouns that may be of
any case.

Tagged output of the morphological analysis is then passed on to ana-
lytical and then tectogrammatical analyzer (for properties of both systems,
see [6] and [4], respectively). Since no grammatemes except for sempos
are filled in the resulting trees, they are then processed with a script that
assigns grammatemes using manually written rules. (For more about the
grammatemes, see [7]).

3.2.2 Structural transformations

There are basically two reasons why the structure of a tectogrammatic tree
returned by the automatic tools should need to be changed:

• The annotation is not errorless. In some cases, the structure of the
tree is so severely malformed that in order to assign an interpretation
to it, the design of rules for subsequent reading assignment would
have to be cluttered with exceptions and thus hard to maintain.

• The structure can also be systematically improved in order to better
suit the model for the assignment of readings.

For instance, sentences such #21, “Které končí na ‘rpm’?” (“Which
end with ‘rpm’?”) are transformed to “Které jsou končící na ‘rpm’?”
(“Which are ending with ‘rpm’?”) – the information about a quality
of the patient is moved from predicate to a new child.

There is a special transformation rule, the null rule, which performs no
transformations at all. Its presence assures that the original sentence (no
matter how malformed) is always passed on to the reading assignment
phase. This assures that no possible interpretation is ever lost.

In the current implementation, there are 9 rules for structural transfor-
mations.

1Note that by observing this convention, NLSH needs not to concern itself with recog-
nition of named entities – this task is performed by the user.
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3.2.3 Picking the best reading

If there were no suitable root readings, the user is signalled that her input
was not understood and is asked to choose a different wording for the
request.

If there was at least one root reading, the one with the highest greedi-
ness (see 3.1.3) is selected. If there were more than one such readings, the
sentence is deemed ambiguous and the user is asked to reformulate the
command.

3.2.4 Conversion to instructions

In this phase, we instantiate and construct targets and check all constraints
of the selected root operation. For instance, when moving files to a certain
target, that target must denote exactly one object.

When a generator refuses to provide any objects in the process of con-
struction (see 2.2.2), NLSH tries to mend the problem by adding an elemen-
tary restriction (location, = CWD), where CWD denotes the current work-
ing directory of the system, to the constructed clause. This problem could
be probably solved better, such as by allowing the dialogue memory to
store locations that have been under discussion.

3.3 Possible improvements

An obvious way to improve the system’s accuracy, and to simplify the set
of rules for the assignment of readings, would be to improve the accuracy
of at least one of the automatic tools. With more reliable and richer tec-
togrammatical structures at its disposal, NLSH could even use some of its
tectogrammatical properties such as coreferences. As noted in 3.1.2, in the
current implementation, each target stored in the dialogue context can be
referenced to only once in each sentence and cannot be referenced from
within it at all. The availability of coreferences would allow the imple-
mentation of “local” references, which would allow, or at least ease, the
interpretation of compound and complex sentences.

The dialogue memory could also be improved. Currently, the only
items stored in it are targets; in order to allow for referencing other ele-
ments in the conversation, such as values, restrictions or even replies the
system has sent to the user, it could be extended to store these as well.
However, it is likely that such a change would require a thorough revision
of the entire interpretation mechanism and the system architecture.
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Chapter 4

Conclusion and future work

We have presented a file manager for UNIX-like operating systems with a
user interface in Czech language. The application is capable of performing
basic operations such as copying or deleting files and creating directories,
and provides means for examining the system and and querying the prop-
erties of its contents.

The system employs tools for automatic annotation of Czech to con-
vert plain text sentences to tectogrammatical dependency trees. The trees
are then interpreted and converted to instructions that are executed. The
querying language, which is the heart of the interpretation mechanism, is
a formal language based on propositional logic with some extensions that
allow it to describe basic relations between objects.

The future work should concentrate on removing the most obvious
limitations of the system, which is the support of nonexistent objects, which
affects the addition of new entities to the world, and the extremely simpli-
fied model of dialogue with the user.
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Appendix A

Test suite sentences

Testing data used for the development of NLSH consisted of 44 sentences
in 7 dialogues (“scenes”).

Sentences that failed to match to an operation or were interpreted in-
correctly are marked with † (there were 4 such failed sentences: #13, #14,
#15 and #32).

1. Kolik je souborů v mém domovském adresáři?
How many files are there in my home directory?

2. Který z nich je nejstarší?
Which of them is the oldest?

3. Vytvoř adresář ‘archiv ’.
Create directory ‘archiv ’.

4. Přesuň do něj ty soubory.
Move the files into it.

5. Jdi do toho adresáře.
Go to that directory.

6. Je v něm soubor ‘README’?
Is there file ‘README’ in it?

7. Smaž ho.
Delete it.

8. Ano.
Yes.
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9. Jdi do domovského adresáře.
Go to the home directory.

10. Je tady adresář ‘devel ’?
Is directory ‘devel ’ here?

11. Je v adresáři ‘˜/mnt/usb ’?
Is it in directory ‘˜/mnt/usb ’?

12. Které adresáře v ‘˜/mnt/usb/ ’ začínají na ‘d’?
Which directories in ‘˜/mnt/usb/ ’ begin with ‘d’?

13. † Co je v tom ‘dev ’?
What is in that ‘dev ’?

14. † A v ‘d’?
And in ‘d’?

15. † Zkopíruj ten adresář ke mně domů a přejmenuj ho na ‘devel ’.
Copy the directory to my home and rename it to ‘devel ’.

16. Je ‘devel/network.c.old ’ starší než ‘devel/network.c ’?
Is ‘devel/network.c.old ’ older than ‘devel/network.c ’?

17. Tak ho smaž.
(So) delete it.

18. Ano.
Yes.

19. Jdi do ‘install ’.
Go to ‘install ’.

20. Kolik je tu souborů?
How many files are there here?

21. Které končí na ‘rpm’?
Which end with ‘rpm’?

22. Jakou mají dohromady velikost?
What is their total size?

23. Jak velký je poslední z nich?
How big is the last of them?
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24. Tak ho smaž.
(So) delete it.

25. Ano.
Yes.

26. Kde jsem?
Where am I?

27. Jsou tu nějaké soubory?
Are there any files here?

28. Které?
Which?

29. Smaž všechny kromě nejnovějšího.
Delete all except the newest.

30. Ne.
No.

31. Který ze souborů začínajících na ‘crc ’ je nejnovější?
Which of the files that begin with ‘crc ’ is the newest?

32. † Smaž všechno kromě něj.
Delete everything except it.

33. Ano.
Yes.

34. Je tu nějaký soubor o velikosti 0 bytů?
Is there any file with size 0 bytes here?

35. Který?
Which one?

36. Který z nich je novější?
Which of them is newer?

37. Smaž ten starší.
Delete the older.

38. Ano.
Yes.
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39. Kolik souborů je novějších než soubor ‘timestamp ’?
How many files are newer than file ‘timestamp ’?

40. Vypiš všechny soubory začínající na ‘time ’.
Print all files that begin with ‘time ’.

41. Kolik je tu souborů?
How many files are there here?

42. Existuje adresář ‘archiv ’?
Does directory ‘archiv ’ exist?

43. Tak ho vytvoř.
(So) create it.

44. Zkopíruj do něj všechny soubory z adresáře ‘todate ’.
Copy all files from directory ‘todate ’ into it.
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